Version Control with Subversion

For Subversion 1.7

(Compiled from r4340)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.7: (Compiled from r4340)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Filato

Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael
Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/

Table of Contents

0111V o PR Xii
== ot PP Xiv
Wt 1S SUDVEISIONT ..ottt ettt et et e et b e ettt et aa e e e et e e et e e e bareeaa e een e eeebnaaeanaees Xiv
IS SUBVErSION the RIGNE TOOI?eeiee e e e e e e e e e et e e e eanes Xiv
W10 = o g] T (oY XV
SUBVEIrSION'S ATCIITECLUIE ...ttt e et e et e e e et e e e e et e e e e et eas XV
SUDVErSION'S COMPONENES ... eettieteett ettt ettt e e ettt et e et et e et e e et e bt e et et e et et e et et e e e eban s XVii
What's NEW IN SUDVEISIONeeniiieei e et e e et e e et e et e e e eb e e e e aeens XVii

F N E o 1= o To ST TUPPRPN Xviii
HOW t0 REAA TRIS BOOKttt ettt et e e e e et e e et e e eaaeaees XViii
(@0 114= (o] Jo N I £ = o o) Xix
I 0] 2700 S B o =PRI XX
ACKNOWIEAGMENES ...ttt e ettt e et e e et et e e e et b e e e e et e e e e et e e e e eba e XXi
1. FUNCAMENEEI CONCEPILS ... eeeet ettt ettt ettt ettt ettt ettt e et et ettt s e et e bt e et b e e et bb e et e b e et e b e e e eba e 1
VEISION CONIIOl BBSICS ...ttt ettt ettt e ettt ettt e et e et e e eh e e et e e et e et tareeeb e e et e e ebn e eeaneennns 1
B I LS (= 10 1 (o Y 1

LIS AT L o o VP 2

RV 2= £ o g aTo 1Y/ oo 1= 2
Version Control the SUDVEISION WEYiiiiii et et e e et e eeeaa e e eenes 7
SUDVEISION REPOSITONES ...ttt ettt ettt e et e e et b e e et et e e e e et e e e e era s 7
REVISIONS ...t et e e e e et e et et et et et a e et et e e e an e e et e eanaaees 7
AdAressing the REPOSITONYiieiiiiiiie e e e e e e e e e e e e et e e e e e e e et e e eenaeenees 8
SUBVErSION WOTKING COPIES ...evvueeeiieei et e et e e e e et e et e e e e e e e e e et e e et e e e et e e et e e et s e et e etn e eatneeennnes 9

S 010107 Y/ 14
2. BASIC USAOR ... eiti ittt et et e e e 15
= o PR 15
Getting Datainto Y OUIr REPOSITONY ... ettt ettt e ettt e et e e et e e e bt e et ettt e e e et e e et e e ebn e e eenaaanaaes 16
IMPOrting FileS and DITECLOMESieeii e e e e e e e e e e et e et e e e e e e e eaeees 16
Recommended REPOSITONY LAYOULceuuiiiiieiiieeis e e s e et e e e e e e e e e e et s e e e et e e et e e eaneeetn e eaneaannaees 17
WHEE'S IN@NGIMIE? ...t e ettt e e et et e e e e et e e e e et r e e e eataneeeeateneeeentnnaaeees 17
Creating @WOIKING CODPYeeeteeeeii ettt ettt e et e ettt e e ettt e e et et e e e e et e e et et e e e e et e e e e eban s 18
BaSICWOIK CYCIE ..ottt ettt et et e e e aaaas 19
Update Y OUF WOIKING COPY ... eeueeineeit ettt ettt e e e et e e e et e e et e e et e e e aa e e an e e et e eeanaaenns 20

= SR o TN [O o = 20
Y= YA o 0| GO - o L= 22

FIX Y OUN MISEBKES ...ttt ettt e e et e e e et n e e e et n e e e et aeeeaeens 25
RESOIVE ANY CONFIICES ...ttt et e e et et et e e e et e e eaaans 26
COMMIT Y OUI CRBNGES ... ettt ettt e et e e et e e et et e e et et e e et et e e e e ebaas 33
s 01T T 0o [T (o] o PP 34
Examining the Details of HiStorical Changesocuuiiiiiii e e e e 34
Generating aList of HIStOrical ChanQEScvvuiiiiiieii e e e e e e e e e e e e an s 36
BrowWSING the REPOSITONY ... iieuiieiii e e e e e s e e e e e e et e e e e an e e eet e e et e eetn s eeaneaenaees 38
Fetching Older REPOSITOrY SNEPSNOLSiiiiiieieiii ettt et et e e e e e e eaaens 39
Sometimes You JUSE NER 10 CleBN UP ..iiiiiiiiiii ettt e e e 40
DispoSing Of @WOIKING COPY .. .eeeniitieiteeei et e ettt e e e et e et e e aa e e et e e et e e ebn e e eanaaenaaes 40
Recovering from an INtEITUPLIONiiuiii e e e e e e e e e e e et e e e e e eaeees 40
Dealing With SErUCTUral CONFIICESiuvuiiiiii e e e e e e e e e et e et e e et e e e e eanas 41
AN EXamPle Tre@ CONFIICEvvu i e e e e e e e e e e e e e et e e e e eanes 41
SUMIMIBIY ettt ettt ettt ettt et e e ettt e et e et n et e e e e e e et et e e e e e e e an e 46
Yo 1V Lo o B e o s ST P T PP SOPPTTRN 47
REVISION SPECITIENS ...ttt et e et et e e et et e et e et ta e e et e e et e e et e ean e eanas 47
e V7S Ko L T =AY 0 {0 47
S Y S Lo [D - =SSP UPPPR 48

Version Control with Subversion

Peg and OPErativVe REVISIONSiiiiiiii e e e e e et e e e e e e e e e et e e et e e e e e e aa e e et e e aan e eetn e eaneennnas 49
0] =S 53
QY 00 = = PP ROUPPTPRUPRIN 54
ManipUIBLING PrOPEITIESeeuiiiiit ettt ettt ettt ettt et e e et e e et et e e e et e e e aab e e ennans 55
Properties and the SUDVErSioN WOTKFIOW e e e e 58
AULOMELIC PrOPEItY SEITING ...ceeuietieetie ittt et e et e et e et e et et et e e et e e et e ean e ean s 60

= o 7= o] 1) Y SRS 61
X 0] 1= A I o= S 61

FIlE EXECULBIIITY ...eeetieeeeei ettt et et e e e e e e eaaans 62
ENd-0f-Line CharaCter SEOUENCESccouuuieiiiii ettt ettt ettt ettt ettt e e et ettt et e et e e e ene e e eanens 62
1gNOrNG UNVEIrSIONEA TTEIMS ...ttt ettt et e et e et e et e e ta e e et e e et e e et e ean e ennnns 63
[VATV (0 S 1= 11 oo 67
S 0= TS <l I T 1= ot (] =S 70
0o (1 o 75
CrealiNg LOCKS ... et 76
DiISCOVEITNG LOCKS ..ettieeiittii ettt ettt ettt ettt ettt e et e et e et et e et e n e e e e e e e e e anb e e e ennans 78
Breaking and StEaliNG LOCKSceuuiitiieiii ettt et e et e e e et e et e e et e e et e e e e e an e 79

LOCK COMMIUNICELION ...ttt ettt ettt ettt e et e ettt et et e e et e e et e e et e e e baaeeeaeeenaaes 81
EXErNalS DEFINITIONSiiiiiiiiiiiii et ettt et et e e e e et e e e e et e e e e et e e e e aanaeeenenns 82
L1371 10 T T £ 88
Creating and Modifying ChangeliStSuuioiiiiiiie e 88
Changelists AS OPEration FIITEIS it e e 90
Changelist LIMITAIIONSiietieii ettt et e et e et e et e et e e e ta e e et e e ea e e et e ean e eenas 92

L= o4 Q1Y e o = PP 92
S0 [0 LCs Y= 00 === o 0] 15 = S 92
ClIENE CrEOENLIAlS ... ettt e e e e et e e e et e e e et e e et e e e et 93
SUMIMIBIY ettt ettt ettt ettt e ettt e et e et r et e e e e et et e e e e e e e e an e 95
4. Branching @0 IMEIGINGuoeeeetnieeiiite ettt ettt e e ettt e e ettt e e et et e e ettt r e e et et e e et ee bt e et eebeteeees bt e e e eebnreeeentnaaeeee 97
What'S @BIranCR? ... e e ettt e e et et e et et e e e eaas 97
L ES o = 7= = 97
(0= 1o 1= 1 2 = 1o o 99
WOrKing With YOUF BIaNCRuuiii et e e e e e e e e e e e e et e e e et e e e e eeens 100

The Key Concepts Behind BranChingcooouueiiiiiiie et 103

= S Lol 1V = o] oo PP OPPP TP PPPPTTRPPPIN 103
(014 1010 1= (PP PTPPPRN 103
Keeping aBranCh iN SYNC et e et e e e an s 104
ReEINtEGrating @BranCh oo e e e 109
MErgEINTO AN PrEVIEIWS ... iie et e e e e e e e e e e e e e e e e e e s e et e e e e e et a e e e eean s 111
(8T To ol oo @ P>l L= PSPPI 114
ReSUITeCting DElEtE [TEIMSt ettt e e et e e et e e e e ab e e e enta e eeee 115

F o\ g (oo 1Y L= (0T o PP 117
10101 1 07/ o TTo! (] oo TR PP UPPTPPTRPPN 117
Merge Syntax: FUIL DISCIOSUIEiiii et e e e e e e e e e e e e et e et e e e e e et e e e e ean s 119
Merges WithOUt MEIGEINTOiiieici e e e e e e e e e e e e e et e e e ean s 120

MOrE 0N MENGE CONFIICES ..ottt et et e e et e et e e e e et e e e eaaa e eeens 121
BIOCKING CRANGESoeiiieiiie et ettt ettt e e ettt e e e e et t e et e abareeeentanaeeee 123
Keeping aReintegrated BranCh AlIVEco. i e 124
Merge-Sensitive Logs and ANNOLELIONSccuiiiuiiiiiei e e e e e e e e e e e e e e e et e eaeeanns 125

[\ o1 T qTe o g Ko laTo ghaTe [N o o= i o 127

Y 0 oS3 o Y Y= 128
Blocking Merge-UnNaWare CHENESo.uuiiiiiiiiee ettt e e et e e e e ab e e e enta e eeens 128

The Final Word 0N Merge TraCKiNgcc.uuieiiiiiieeiit ettt ettt e e e e e e 129
TraVerSiNG BranChES ... i e et e et e et e e e e et e e et e e et e e et e e ea e eeaaaes 130
=0 = T PRSPPI 132
(O L To T S T] o) L= I PP 132
(@ Lo Jr= @] 1oL I [P 132
2= 1o ATV = T 1= 7= o= 133
REPOSITONY LBYOUL ...ttt ittt ettt ettt ettt e e ettt e e et et r e e et et neeeenbe s e e eentnneeeee 133

Version Control with Subversion

DL = I = (0= PPRTRPPPIN 134
Common BranChing PatternSoiiieiiiii e e e e e e e e e e e et e e et e et e e et e e et e eanneean s 135
REIEESE BIraNChESceiiiiiieii et e 135
s 01 Lol 2 =T o == PP 136
V4= 00 (o g = = 14 = PP PTPPTN 136
General Vendor Branch Management ProCEAUNEcouuviuiiiniii i e e e e ees 137

Y T o= o o1 £ o PP 139

R 010107 Y/ 140
5. REPOSITONY AQMINISITAIION ...ttt et et e ettt s ettt e et e b e e et b e e e e bb e e e e b s 142
The Subversion REPOSITOrY, DEFINEiiiiiii et 142
Strategies for RepOSItOry DEPIOYMENT it e et e e e et e e et e e e e ean s 143
Planning Y our REPOSITOry OrganiZationceeusoieuneeie ettt e e e et e e e et e e e et e eaa e een s 143
Deciding Where and How t0 HOSt YOUr REPOSITONYvvvuiieiieii i e e e s e e e e e e e eanes 145
(01910701 T o[- WD = S (o = T 146
Creating and Configuring Y OUF REDOSITONYceeuuuieiiii ettt ettt e et e e e et e e e eaa s 149
Creating the REPOSITONY ... iieiiee ittt ettt ettt et a ettt e et et e e e et e e e eaa s 149
Implementing REPOSITONY HOOKSiiuiiiie ettt e e e e e een s 150
Berkeley DB ConfigUIaionveeiiiiieie et e e e e e e e e e e et e e e et e et e eneeanns 151
S ST @0 1o U= o] o 151

S 01015 10 VALY, = 1= 7= (o 151
F N AN [0 T T (= o) T oo 151
Commit LOG MESSAGE COMECIION ...eevtueiiiit et ettt ettt ettt e et et e et et e ettt e et et e e e eaa s 155
MaNAGING DISK SPACE ... ctuiiiieiit ettt et et e e et et e et e e e e e e ean s 156
BEIKEIEY DB RECOVEIY ..vuiiiiiiiit ettt ettt e e e e e e e e e e et e e e e et e e e et e et e et e et eenaeanns 159
Migrating Repository Data EISBWHEIEcovniiiii e e e 160
Filtering REPOSITONY HIStOYccueiiiiiiei e et e e e e e e e e e et e et e e e e e et a e e eeen s 165
REPOSITONY REDIICAIION ...ttt e et e et e et e e et e e e e ab e e e eata e eeees 168
REPOSITONY BACKUD ...ttt ettt ettt e ettt e e et et r e e ettt r e e e enbeneeeentaneeeee 175
Managing REPOSITONY UUIDSttt e e e et e e e e e et e e e e ean s 176
Moving and REMOVING REPOSITONESuuiiiieiiiie ettt e e et et et e et e e et e e et e e eanaaeens 177
S 0] 0107 Y/ 177
LSS V7= B Oo 011 To 0 =1 o o 179
L@ < Y 179
Choosing @ Server CONFIGUIBLIONieeee et eett ettt ettt et e et b e e e et e et e e e e e b e e e ene s 180
BRSNS S A RS = AV PP 180
SVNSEIVE OVEN SSH ...ttt ettt ettt ettt et et et e et e et e e et e et et e e a e e e e e eees 180

BTN = o 1] I I RS = Y= 181
RECOMMENTELIONSeve et et e et e e e e e e bt e e et et r e e e eatereeeeabn s e eeeatnneeeees 181

S g S A S L O s (0] 1 (1S~ Y= S 182
INVOKING ThE SEIVET .ttt e et e et e e et et e e e e abreeeenba e eeees 182
Built-in Authentication and AULNOMTZBEIONc..uiiiti e e an s 186
USING SVNSENVE WITN SA S oot e e e et e et e e e e e e e et e e e e e neaneeanns 188

LI 101 = 1T o 0LV /= S 190

S o I Oe 1 1Te 0= o g T N PR 192
httpd, the APAChE HT TP SEIVEY ... ettt e et e et e e e e e eaaans 193
PrEIEOUISITES ..ottt e et ettt et e et e et e e e ab e e eab e aaee 194

BasiC APache CONFIQUIELIONiie e ettt e e et e et e e e e e et e e e e ean s 194
AULNENTICEEION OPLIONS ...ttt et ettt e e e et et e e et e e et e e e e et tn e e e et e eeaneaenas 196

W11 gz (0] @ o1 o] = 199
Protecting network traffic With SSLoiiiiii e e 202
= 0o o == 204
Path-Based AULNOIIZAIONiiueiii et e et e et e e et e e et e e ea e e et e e eaneeenns 211
(Lo g B T= Y I oo o1 1o RSP PPRPT 216
S 4V S @ 1111 114 o] o I PP 218
D= = O o o1 1o [218
Network ComMpPreSSION OF D@LAcvvvuieiiieii e e e e e e e e e e e e e e e e e een s 219
Supporting Multiple Repository ACCESS MENOUSuuiiiiiiiciii e 219
7. Customizing Y our SUDVErSION EXPEITENCEcevuuiiiiii ettt ettt ettt ettt e e et e e e e e e b s 221

Vi

Version Control with Subversion

gL =X @0 g Lo U= o) AN == P 221
Configuration ATEALEAYOULciueeiiiieii et et e e et e e e e et e e e e e et e e et e e ea e eetn e eaneeaneees 221
Configuration and the WINdOWS REGISIIYciieuiiiii e 222
CoNfiGUIATION OPLIONS ...ttt ettt ettt ettt et e e e e et et e et et e e et be e e e et eeeena s 223

(o To= T2 1 o] o PSPPI 228
L0010 = 6= =T To [F o T o= | =S 229
SUBVErSION'SUSE Of LOCAIESvvuiiiiiii ettt ettt e et e e et e e et e e e eaan s 229

L LS T g0 g = o T o 230

Using External Differencing and Merge TOOISuuiiiiiitiiiiiii ettt e et e e e e 231
= o [PP 232
= = o T TP 233
L 7= 11 (0T 234

S 0] 107/ 235

S 1070 (o T 1o TS T 0177 £ T o 236

Layered Library DESION .. .cceui ettt et ettt e ettt e e ettt e e et et e e et et e e e et e e e e a b e e eaba e aee 236
S Lo (oY I = PP TPPPPTRTPPPIN 237
REPOSITONY ACCESS LAY O ... ittt ettt et e e et e e e et e et e e et e e e e ean s 240
L0 1= | B - 1Y 241

L LS T 0T I 1T 242
The Apache Portable RUNIME LIDIaryocoouiiiiii i e e e e eaes 242
g Tox 0] 1SR g To [== o] 243
URL and Path REQUITEIMENTSeuuiiiiiii ettt ettt ettt ettt e e ettt e e e e et e e e rne e e eneens 243
Using Languages Other Than € and CHoueiiii ettt et e e e e e e e e 243
1000 [0] o] = PP UPPTPPTRN 244

S 0] 0107 Y/ 250

9. SUBVErSioN COMPIELE REFEIENCE ... ivvuiiiii et ee e e et e e e e e e e e e e e e e et e e et e e et s e e e e an s e aetneeeaneeenns 251

svn—Subversion Command-Line CHENtooiiiii e e e e e e e e et e e e e eneees 251
SV OPLIONS ...ttt ettt ettt oottt et e ettt e e et e e et e e e eaa s 251
SVN SUBCOMIMANGS ...t e ettt e e et e e et e e et e e et e e aaeeanaees 258

svnadmin—Subversion Repository AAMINISIFLIONco..iiiiie e 335
Y=o L0 0T T KO o140 PR 335
SVNAAMIN SUDCOMIMANSeeitiee ettt ettt e et e ettt e e ettt e e e e bb e e e et e eeeaan s 336

SvNlook—Subversion REPOSItOrY EXAMINGLIONcccouuiiiiiiii it 359
SVNTOOK OPIONS ...ttt ettt ettt ettt e ettt e ettt e e et et e e et et e e et e b e e e e et e e e e eaa s 359
SVNIOOK SUDCOMIMANGS ...t ettt e e e et e e et e e et e e et e e e aneeanaaes 361

SVNSyNC—SUbVErsion REPOSITOrY MITTOITNGuuiiiieiii ettt et et e e e et e e e e ean s 380
Y0157 0w o1 o) 1 PP 380
SVNSYNC SUDCOMIMBINAS ... eevueeieeiit e e e e e e e e et s e et e e e e e et e e e e e et e e et reean e e e tn s e e et e e eanaeetn s eeanneeannaees 382

svnrdump—Remote Subversion RepoSitory Data Migrationocoieueieeiiiiieeeiiie et 390
SVNIAUMP OPLIONS ...ttt ettt et e et e e et e e et et e e ettt e e et et e e e e et e e e e enan s 390
SVNIAUMP SUDCOMIMENGS ...ttt ettt e et e ettt e et e e e ta e e e et e e et e e ebn e e eaneaenaaes 391

SVNSErVE—CUSIOM SUDVEISION SEIVEY ...ttt ettt et e e e e et e e et e e e e ean s 394
Y10 =YL= Y o)1) PP 395

svndumpfilter—Subversion History FIITErNGcveueiiii e e e e e e 396
SVNAUMPFITTEr OPLIONS ...ttt e e et e e et e e e et e e e eaa s 396
SVNAUMPFITtEr SUDCOMIMEANAScceite ettt e e ettt e e e e e e e s 397

svnversion—Subversion Working Copy Version INfOiiiiiii e 402

mod_dav_svn—Subversion Apache HTTP Server MoaUIEoouniiiiiii e 404

mod_authz_svn—Subversion Apache HTTP Authorization Modulecooviiiiiiiiiiii e, 407

ST o)== o I 0] 0= =S 408
VErSIONEA PrOPEITIES ...t e et e et e e et e eeeaa s 408
UNVErSIONE PrOPEITIESee ittt et ettt ettt e e e et e e e nae e e eneans 409

S 00 L0 Y (070 G PSPPI 410

A. SUbVErSION QUICK-SEA GUITEieiiiieiiie et e e e e e e e e e e e et e et e et e e e et e et e aneanns 420

TS = T 1o TS W01/ £ T o 420

L T T =0 I)4 T 421

B. SUDVEISION FOr CV S USEIS ...iiiiiiiiiieiie ettt ettt e e e e et e e et e e e e e e e e et e e et e e e tn e e e eaeean e e et neeanneeenns 423
Revision NUmMbers Are DIfferEnt NOWoooue e et e e e e e e eees 423

Vii

Version Control with Subversion

DR = o (0 VALY A= £ o] 1= 423

More DiSCONNECIE OPEIELIONScveeuieeueiei et e e e e e e e e e et e e e e e et e e et e e et e e et e e ean e eetnaeeaneeenaeeetneeennaaenns 424
Distinction Between StatuS and UPAEEEuuuiiiiiiiiieiii et e et e e et e e eaa e eees 424
= LU PSPPI 424

L]0 - 1= SRR 425

BranChES @GN0 TAOS ..ivuiiiniii it e et et e et e e e e et e et e e e e e et e et e e e e e e a e e anas 425

Y 0 = W 0 0= 1= 426

L0000 [Tor a2 =-=o [o PP 426
Binary FI1eS and TranSIationooiouiiiiiii e ettt 426

V4= 5 Mol a= o 1Y, oo (U1 = PR 426

F T 1107 01T or= 1 o o PP 427
Converting a Repository from CV S 10 SUDVEISIONc.uuiitiiiiee et e e e e s 427

C. WEDDAYV QN0 AULOVEISIONING ..vvnirtnereteetteeetnaestneeetnsesatesaseeetaaeetnaeetneeaneeanaeetnaeeanaeetneeaneeaneretnaernnaesnns 428
WL ISWEDDAV ? .ot e ettt e e e et e e et et e e e e et e e ettt e e e e et e e e e eaa s 428

FN 0 10V = Yo] oo PSPPSR 429
Client INEErOPEIaITITYttt et et et e e et e e e e e e 430
Standalone WEDDAY APPIICALTIONSceuuiiiieeie et e et e e e e e et e e e e eaa e 431
File-EXplorer WEDDAV EXIENSIONSccuuiiiiiiii ettt et et e et e et e e et e et e e e e ean s 432

WEebDAV Filesystem IMPlEMENtELiONiiiiiieiii e e e e e e e e e e e et e e e ean s 433

D 20 @70 Y/ o | 435
T 440

viii

List of Figures

ST Y = o g R o)= o (1 = PP XV
O N Y o o o T 017 = Y= S = o 1
1.2. The ProbIEM tO QYOI ... oo ettt ettt e e et e et e b e e e et e e e et e 2
1.3. The [ock-mOodify-UNIOCK SOIULIONcuuiieiiiii e ettt e et e e et e e e e e e 3
1.4. The copy-mOdify-Merge SOIULIONcuu e e et e et et e e et e e et e e ea e e et e eanaaeenns 5
1.5. The copy-modify-merge solution (CONtINUE)couiiiiiiiii i e e e e e e 5
G = = 7= 010 TS0 V= (0 1= 7
A I 0 TC T = oot (0 VAR =S (= 11
4.1, Branches Of DeVEIOPIMENLcootuiiiiii e ettt e e et e e ettt e et ea b e e e et b e e e eeta e e eeabnaaeeees 97
4.2, SEArtiNG FEPOSITONY TAYOULceeetteeeiit ettt ettt ettt e e et et e e et et e e e eebar e e e estareeeeetnreeeentnnaeeee 98
4.3. REPOSITONY WIth NMEW COPY ... ettt ettt et ettt e et e et e ettt e et e e e et e e et e e et e e ean e e ebnneeenaeennaaes 99
4.4. The branching of ONE fIlESNISIONYuuiiii e e e aaas 101
8.1. Filesand directorieS in tWo GiMENSIONSc.uuuiiiii et e e et e e et e e et e e e et e e e et aas 238
8.2. Versioning time—the third dimension!coiiiiiiii e e e e e e e e e eans 239

List of Tables

O = o0 (0] V= oot == U 8
225 I @)1 T 40 T oo [=0 0TS 36
4.1. Branching and merging COMIMANTSccouuuuiiiiiite ittt et e e e et e et e e et et e e e e et e e e e et e e e aenenas 140
5.1. RePOSItOry data StOre COMPAITSONceuuueteettneteeti ettt e e e et e et et e et e eb e et e tb e ettt e et e bb e et e b e e e e ebb e e e ebeees 146
6.1. Comparison Of SUDVErSION SEIVEN OPLIONSc.uuieii ittt ettt e e e et e e et e e e e e e et e e aa e e an e aetneaeanaaenns 179
C.1. CommON WEBDAYV CHIENES ...ttt ettt e et e e e e e e rere s 430

List of Examples

4.1. Merge-tracking gatekeeper start-Commit hOOK SCHPLcovuiiiiiiiiii e e e e e e eaes 129
5.1. txn-info.sh (reporting outstanding traNSACtIONS)vvueiiii e e e e e e e e e e e e e e e eeans 157
5.2. Mirror repository's pre-revprop-change hoOK SCHIPLuu i 169
5.3. Mirror repository's start-Commit NOOK STc.uuuiiiiii et e e e e e 170
6.1. A sample svnserve launchd job definition ... e 185
6.2. A sample configuration fOr @aNONYMOUS BCCESScvuiineiieit ettt e e e e e e e et e e et e et e et e et e et e an e e e eaneeaneeaeees 200
6.3. A sample configuration for authentiCated GCCESSiuvuiii e e e e e e e e eaes 201
6.4. A sample configuration for mixed authenti Cated/anonNyMOUS @CCESSu.vvveririueeiiieeeiiee e e e e e e e e e et e e eeans 201
6.5. Disabling path CheCKS AlTOGEINENo e e et e e et e b s 202
7.1. Sample registration entrieS (.reg) TIlE e e e 222
Ao L1 = o oY PP 232
2 T 1 AT = 1 o - 233
o T 7T/ = 1 233
8 30 L7/ = 1« - 234
LA 0= (0 =T = o PP 234
T A (= (e =T = o o PSP PPPTTR 235
8.1. USING the FEPOSITONY [BYEN ... ittt et e et et e et e e et e e et e e e e e e et e e e et e e eanaaenes 244
8.2. Using the repository layer With PYthON ... e e e e 246
G AN Y1 10 TS = [0S - 11 = 248

Xi

Foreword

Karl Fogel
Chicago, March 14, 2004.

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people actually ask, but of the ques-
tions the FAQ's author wishes people would ask. Perhaps you've seen the type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through our patented office group-
ware innovations. The answer is simple. First, click on the File menu, scroll down to In-
crease Productivity,then...

The problem with such FAQs isthat they are not, in aliteral sense, FAQs at al. No one ever called the tech support line and asked,
“How can we maximize productivity?’ Rather, people asked highly specific questions, such as “How can we change the calendar-
ing system to send reminders two days in advance instead of one?’ and so on. But it'salot easier to make up imaginary Frequently
Asked Questions than it is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into a coherent, searchable
whole that reflects the collective experience of usersin the wild. It calls for the patient, observant attitude of afield naturalist. No
grand hypothesizing, no visionary pronouncements here—open eyes and accurate note-taking are what's needed most.

What | love about this book is that it grew out of just such a process, and shows it on every page. It is the direct result of the au-
thors' encounters with users. It began with Ben Collins-Sussman's observation that people were asking the same basic questions
over and over on the Subversion mailing lists: what are the standard workflows to use with Subversion? Do branches and tags work
the same way asin other version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer of 2002 to write The Sub-
version Handbook, a 60-page manual that covered all the basics of using Subversion. The manual made no pretense of being com-
plete, but it was distributed with Subversion and got users over that initial hump in the learning curve. When O'Rellly decided to
publish afull-length Subversion book, the path of least resistance was obvious: just expand the Subversion handbook.

The three coauthors of the new book were thus presented with an unusual opportunity. Officially, their task was to write a book
top-down, starting from a table of contents and an initial draft. But they also had access to a steady stream—indeed, an uncontrol-
lable geyser—of bottom-up source material. Subversion was aready in the hands of thousands of early adopters, and those users
were giving tons of feedback, not only about Subversion, but also about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists and chat rooms incessantly,
carefully noting the problems users were having in real-life situations. Monitoring such feedback was part of their job descriptions
at CollabNet anyway, and it gave them a huge advantage when they set out to document Subversion. The book they produced is
grounded firmly in the bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user
manual and FAQ sheet. This duality might not be noticeable on afirst reading. Taken in order, front to back, the book is smply a
straightforward description of a piece of software. There's the overview, the obligatory guided tour, the chapter on administrative
configuration, some advanced topics, and of course, a command reference and troubleshooting guide. Only when you come back to
it later, seeking the solution to some specific problem, does its authenticity shine out: the telling details that can only result from
encounters with the unexpected, the examples honed from genuine use cases, and most of all the sensitivity to the user's needs and
the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion. Sometimes the precision with
which it anticipates your questions will seem eerily telepathic; yet occasionaly, you will stumble into a hole in the community's
knowledge and come away empty-handed. When this happens, the best thing you can do is emall
<user s@ubver si on. apache. or g> and present your problem. The authors are still there and still watching, and the authors
include not just the three listed on the cover, but many others who contributed corrections and original material. From the com-
munity's point of view, solving your problem is merely a pleasant side effect of a much larger project—namely, slowly adjusting
this book, and ultimately Subversion itself, to more closely match the way people actualy use it. They are eager to hear from you,
not only because they can help you, but because you can help them. With Subversion, as with all active free software projects, you

Xii

Foreword

are not alone.

L et this book be your first companion.

Xiii

Preface

“It isimportant not to let the perfect become the enemy of the good, even when you can agree on what perfect is.
Doubly so when you can't. As unpleasant as it isto be trapped by past mistakes, you can't make any progress by
being afraid of your own shadow during design.”

—Greg Hudson, Subversion devel oper

In the world of open source software, the Concurrent Versions System (CVS) was the tool of choice for version control for many
years. And rightly so. CVS was open source software itself, and its nonrestrictive modus operandi and support for networked oper-
ation allowed dozens of geographically dispersed programmers to share their work. It fit the collaborative nature of the open source
world very well. CVS and its semi-chaotic devel opment model have since become cornerstones of open source culture.

But CVSwas not without its flaws, and simply fixing those flaws promised to be an enormous effort. Enter Subversion. Subversion
was designed to be a successor to CV'S, and its originators set out to win the hearts of CV S users in two ways—by creating an open
source system with a design (and “look and feel”) similar to CVS, and by attempting to avoid most of CVS's noticeable flaws.
While the result wasn't—and isn't—the next great evolution in version control design, Subversion is very powerful, very usable,
and very flexible.

This book is written to document the 1.7 series of the Apache Subversi on™? version control system. We have made every attempt
to be thorough in our coverage. However, Subversion has a thriving and energetic development community, so already a number of
features and improvements are planned for future versions that may change some of the commands and specific notes in this book.

What Is Subversion?

Subversion is a free/open source version control system (VCS). That is, Subversion manages files and directories, and the changes
made to them, over time. This allows you to recover older versions of your data or examine the history of how your data changed.
In this regard, many people think of aversion control system as a sort of “time machine.”

Subversion can operate across networks, which allows it to be used by people on different computers. At some level, the ability for
various people to modify and manage the same set of data from their respective locations fosters collaboration. Progress can occur
more quickly without a single conduit through which all modifications must occur. And because the work is versioned, you need
not fear that quality is the trade-off for losing that conduit—if some incorrect change is made to the data, just undo that change.

Some version control systems are aso software configuration management (SCM) systems. These systems are specifically tailored
to manage trees of source code and have many features that are specific to software development—such as natively understanding
programming languages, or supplying tools for building software. Subversion, however, is not one of these systems. It is a genera
system that can be used to manage any collection of files. For you, those files might be source code—for others, anything from
grocery shopping liststo digital video mixdowns and beyond.

Is Subversion the Right Tool?

If you're a user or system administrator pondering the use of Subversion, the first question you should ask yourself is: "Is this the
right tool for the job?" Subversion is a fantastic hammer, but be careful not to view every problem asanail.

If you need to archive old versions of files and directories, possibly resurrect them, or examine logs of how they've changed over
time, then Subversion is exactly the right tool for you. If you need to collaborate with people on documents (usually over a net-
work) and keep track of who made which changes, then Subversion is also appropriate. This is why Subversion is so often used in
software development environments—working on a development team is an inherently social activity, and Subversion makes it
easy to collaborate with other programmers. Of course, there's a cost to using Subversion as well: administrative overhead. Y ou'll
need to manage a data repository to store the information and all its history, and be diligent about backing it up. When working

Iwell refer to it simply as“ Subversion” throughout this book. Y ou'll thank us when you realize just how much space that saves!

Xiv

Preface

with the data on a daily basis, you won't be able to copy, move, rename, or delete files the way you usually do. Instead, you'll have
to do all of those things through Subversion.

Assuming you're fine with the extra workflow, you should still make sure you're not using Subversion to solve a problem that other
tools solve better. For example, because Subversion replicates data to all the collaborators involved, a common misuse isto treat it
as a generic distribution system. People will sometimes use Subversion to distribute huge collections of photos, digital music, or
software packages. The problem is that this sort of data usually isn't changing at all. The collection itself grows over time, but the
individual files within the collection aren't being changed. In this case, using Subversion is “overkill 2 Therearesi mpler tools that
efficiently replicate data without the overhead of tracking changes, such asrsync or unison.

Subversion's History

In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a replacement for CVS. CollabNet
offereds a collaboration software suite called CollabNet Enterprise Edition (CEE), of which one component was version control.
Although CEE used CVS asiits initia version control system, CVS's limitations were obvious from the beginning, and CollabNet
knew it would eventually have to find something better. Unfortunately, CV'S had become the de facto standard in the open source
world largely because there wasn't anything better, at least not under a free license. So CollabNet determined to write a new ver-
sion control system from scratch, retaining the basic ideas of CV'S, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999), and asked if he'd
like to work on this new project. Coincidentally, at the time Karl was already discussing a design for a new version control system
with his friend Jim Blandy. In 1995, the two had started Cyclic Software, a company providing CVS support contracts, and al-
though they later sold the business, they still used CV'S every day at their jobs. Their frustration with CV'S had led Jim to think
carefully about better ways to manage versioned data, and he'd already come up with not only the Subversion name, but also the
basic design of the Subversion data store. When CollabNet called, Karl immediately agreed to work on the project, and Jim got his
employer, Red Hat Software, to essentially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben
Collins-Sussman, and detailed design work began in May 2000. With the help of some well-placed prods from Brian Behlendorf
and Jason Rabbins of CollabNet, and from Greg Stein (at the time an independent developer active in the WebDAV/DeltaV spe-
cification process), Subversion quickly attracted a community of active developers. It turned out that many people had encountered
the same frustrating experiences with CV S and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version control methodol ogy, they
just wanted to fix CVS. They decided that Subversion would match CV S's features and preserve the same development model, but
not duplicate CVS's most obvious flaws. And athough it did not need to be a drop-in replacement for CVS, it should be similar
enough that any CV S user could make the switch with little effort.

After 14 months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Subversion developers stopped using
CV S to manage Subversion's own source code and started using Subversion instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a few full-time Subversion de-
velopers), Subversion is run like most open source projects, governed by a loose, transparent set of rules that encourage merito-
cracy. In 2009, CollabNet worked with the Subversion developers towards the goal of integrating the Subversion project into the
Apache Software Foundation (ASF), one of the most well-known collectives of open source projects in the world. Subversion's
technical roots, community priorities, and development practices were a perfect fit for the ASF, many of whose members were
already active Subversion contributors. In early 2010, Subversion was fully adopted into the ASF's family of top-level projects,
moved its project web presence to http://subversion.apache.org, and was rechristened “ Apache Subversion”.

Subversion's Architecture

Figure 1, “ Subversion's architecture” illustrates a “mile-high” view of Subversion's design.

Figure 1. Subversion's ar chitecture

20r asafriend putsit, “swatting afly with aBuick.”
3CollabNet Enterprise Edition has since been replaced by a new product line called CollabNet TeamForge.

XV

http://www.collab.net
http://subversion.apache.org

Preface

commandling
cllant app GUI client apps

__ Citant
‘.«"d’- intertace
Cliant Library
Working Gopy /
Managament

Library #
Aepository Access
Dav VN Local

#
#

4
/ Ye Olde Internet
{Ary TCPAP Matwork)

Apache
miod daw EVNESBE

mod_dav_swn

Reposiony
Intertace

Subwversion Repository

' !

Berkeley DB FSFS

diagram by Brian 'W. Fitzpatnck «fitz & red-bean.comes

On one end is a Subversion repository that holds all of your versioned data. On the other end is your Subversion client program,
which manages local reflections of portions of that versioned data. Between these extremes are multiple routes through a Reposit-
ory Access (RA) layer, some of which go across computer networks and through network servers which then access the repository,

XVi

Preface

others of which bypass the network altogether and access the repository directly.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what you get. Don't be alarmed
if the brief descriptions leave you scratching your head—plenty more pagesin this book are devoted to aleviating that confusion.

svn
The command-line client program

svnversion
A program for reporting the state (in terms of revisions of the items present) of aworking copy

svnlook
A tool for directly inspecting a Subversion repository

svnadmin
A tool for creating, tweaking, or repairing a Subversion repository

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to others over a network

svnserve
A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to make your reposit-
ory available to others over a network

svndumpfilter
A program for filtering Subversion repository dump streams

svnsync
A program for incrementally mirroring one repository to another over a network

svnrdump
A program for performing repository history dumps and loads over a network

What's New in Subversion

The first edition of this book was published by O'Reilly Media in 2004, shortly after Subversion had reached 1.0. Since that time,
the Subversion project has continued to release new major releases of the software. Here's a quick summary of major new changes
since Subversion 1.0. Note that this is not a complete list; for full details, please visit Subversion's web site at ht-
tp://subversion.apache.org.

Subversion 1.1 (September 2004)
Release 1.1 introduced FSFS, a flat-file repository storage option for the repository. While the Berkeley DB backend is still
widely used and supported, FSFS has since become the default choice for newly created repositories due to its low barrier to
entry and minimal maintenance requirements. Also in this release came the ability to put symbolic links under version control,
auto-escaping of URLS, and alocalized user interface.

Subversion 1.2 (May 2005)
Release 1.2 introduced the ability to create server-side locks on files, thus serializing commit access to certain resources.
While Subversion is still a fundamentally concurrent version control system, certain types of binary files (e.g. art assets) can-
not be merged together. The locking feature fulfills the need to version and protect such resources. With locking also came a
complete WebDAV auto-versioning implementation, allowing Subversion repositories to be mounted as network folders. Fi-
nally, Subversion 1.2 began using a new, faster binary-differencing algorithm to compress and retrieve old versions of files.

XVii

http://subversion.apache.org
http://subversion.apache.org

Preface

Subversion 1.3 (December 2005)
Release 1.3 brought path-based authorization controls to the svnserve server, matching a feature formerly found only in the
Apache server. The Apache server, however, gained some new logging features of its own, and Subversion's API bindings to
other languages also made great leaps forward.

Subversion 1.4 (September 2006)
Release 1.4 introduced a whole new tool—svnsync—for doing one-way repository replication over a network. Major parts of
the working copy metadata were revamped to no longer use XML (resulting in client-side speed gains), while the Berkeley DB
repository backend gained the ability to automatically recover itself after a server crash.

Subversion 1.5 (June 2008)
Release 1.5 took much longer to finish than prior releases, but the headliner feature was gigantic: semi-automated tracking of
branching and merging. This was a huge boon for users, and pushed Subversion far beyond the abilities of CVS and into the
ranks of commercial competitors such as Perforce and ClearCase. Subversion 1.5 also introduced a bevy of other user-focused
features, such asinteractive resolution of file conflicts, sparse checkouts, client-side management of changelists, powerful new
syntax for externals definitions, and SASL authentication support for the svnserve server.

Subversion 1.6 (March 2009)
Release 1.6 continued to make branching and merging more robust by introducing tree conflicts, and offered improvements to
several other existing features: more interactive conflict resolution options; de-telescoping and outright exclusion support for
sparse checkouts; file-based externals definitions; and operational logging support for svnserve similar to what mod_dav_svn
offered. Also, the command-line client introduced a new shortcut syntax for referring to Subversion repository URLS.

Subversion 1.7 (October 2011)
Release 1.7 was primarily a delivery vehicle for two big plumbing overhauls of existing Subversion components. The largest
and most impactful of these was the so-called “WC-NG”"—a complete rewrite of the libsvn_wc working copy management
library. The second change was the introduction of a sleeker HTTP protocol for Subversion client/server interaction. Subver-
sion 1.7 delivered a handful of additional features, many bug fixes, and some notable performance improvements, too.

Audience

This book iswritten for computer-literate folk who want to use Subversion to manage their data. While Subversion runs on a num-
ber of different operating systems, its primary user interface is command-line-based. That command-line tool (svn), and some ad-
ditional auxiliary programs, are the focus of this book.

For consistency, the examples in this book assume that the reader is using a Unix-like operating system and is relatively comfort-
able with Unix and command-line interfaces. That said, the svn program also runs on non-Unix platforms such as Microsoft Win-
dows. With afew minor exceptions, such as the use of backward slashes (\) instead of forward slashes (/) for path separators, the
input to and output from this tool when run on Windows are identical to that of its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changes to source code. This is the most com-
mon use for Subversion, and therefore it is the scenario underlying al of the book's examples. But Subversion can be used to man-
age changes to any sort of information—images, music, databases, documentation, and so on. To Subversion, all dataisjust data.

While this book is written with the assumption that the reader has never used a version control system, we've aso tried to make it
easy for users of CVS (and other systems) to make a painless leap into Subversion. Specia sidebars may mention other version
control systems from time to time, and Appendix B, Subversion for CVS Users summarizes many of the differences between CVS
and Subversion.

Note also that the source code examples used throughout the book are only examples. While they will compile with the proper

compiler incantations, they are intended to illustrate a particular scenario and not necessarily to serve as examples of good pro-
gramming style or practices.

How to Read This Book

XViii

Preface

Technical books always face a certain dilemma: whether to cater to top-down or to bottom-up learners. A top-down learner prefers
to read or skim documentation, getting a large overview of how the system works; only then does she actually start using the soft-
ware. A bottom-up learner isa“learn by doing” person—someone who just wants to dive into the software and figure it out as she
goes, referring to book sections when necessary. Most books tend to be written for one type of person or the other, and this book is
undoubtedly biased toward top-down learners. (And if you're actually reading this section, you're probably already a top-down
learner yourself!) However, if you're a bottom-up person, don't despair. While the book may be laid out as a broad survey of Sub-
version topics, the content of each section tends to be heavy with specific examples that you can try-by-doing. For the impatient
folks who just want to get going, you can jump right to Appendix A, Subversion Quick-Start Guide.

Regardless of your learning style, this book aims to be useful to people of widely different backgrounds—from those with no pre-
vious experience in version control to experienced system administrators. Depending on your own background, certain chapters
may be more or less important to you. The following can be considered a “recommended reading list” for various types of readers:

Experienced system administrators
The assumption here is that you've probably used version control before and are dying to get a Subversion server up and run-
ning ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how to creste your first
repository and make it available over the network. After that's done, Chapter 2, Basic Usage and Appendix B, Subversion for
CVSUsers are the fastest routes to learning the Subversion client.

New users
Y our administrator has probably set up Subversion aready, and you need to learn how to use the client. If you've never used a
version control system, then Chapter 1, Fundamental Concepts is a vital introduction to the ideas behind version control.
Chapter 2, Basic Usage is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. Y ou're going to want to learn how to do more
advanced things with Subversion, such as how to use Subversion's property support (Chapter 3, Advanced Topics), how to use
branches and perform merges (Chapter 4, Branching and Merging), how to configure runtime options (Chapter 7, Customizing
Your Subversion Experience), and other things. These chapters aren't critical at first, but be sure to read them once you're com-
fortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on top of its
many APIs. Chapter 8, Embedding Subversion isjust for you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide for al Subversion com-
mands, and the appendixes cover a number of useful topics. These are the chapters you're mostly likely to come back to after
you've finished the book.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Fundamental Concepts
Explains the basics of version control and different versioning models, along with Subversion's repository, working copies,
and revisions.

Chapter 2, Basic Usage
Walks you through aday in the life of a Subversion user. It demonstrates how to use a Subversion client to obtain, modify, and
commit data.

Chapter 3, Advanced Topics
Covers more complex features that regular users will eventually come into contact with, such as versioned metadata, file lock-
ing, and peg revisions.

XiX

Preface

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, common use cases, how to undo
changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the tools you can
useto do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and offers different ways to access your repository: HTTP, the svn pro-
tocol, and local disk access. It also covers the details of authentication, authorization and anonymous access.

Chapter 7, Customizing Your Subversion Experience
Explores the Subversion client configuration files, the handling of internationalized text, and how to make external tools co-
operate with Subversion.

Chapter 8, Embedding Subversion
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas from a program-
mer's point of view. It also demonstrates how to use the public APIs to write a program that uses Subversion.

Chapter 9, Subversion Complete Reference
Explainsin great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the whole family!

Appendix A, Subversion Quick-Sart Guide
For the impatient, awhirlwind explanation of how to install Subversion and start using it immediately. Y ou have been warned.

Appendix B, Subversion for CVSUsers
Covers the similarities and differences between Subversion and CV'S, with numerous suggestions on how to break all the bad
habits you picked up from years of using CVS. Included are descriptions of Subversion revision numbers, versioned director-
ies, offline operations, update versus status, branches, tags, metadata, conflict resolution, and authentication.

Appendix C, WebDAYV and Autoversioning
Describes the details of WebDAV and DeltaVv and how you can configure your Subversion repository to be mounted read/
writeasa DAV share.

Appendix D, Copyright
A copy of the Creative Commons Attribution License, under which this book is licensed.

This Book Is Free

This book started out as bits of documentation written by Subversion project developers, which were then coalesced into a single
work and rewritten. As such, it has always been under a free license (see Appendix D, Copyright). In fact, the book was written in
the public eye, originally as part of the Subversion project itself. This means two things:

* You will alwaysfind the latest version of this book in the book's own Subversion repository.

* You can make changes to this book and redistribute it however you wish—it's under a free license. Your only obligation is to
maintain proper attribution to the original authors. Of course, we'd much rather you send feedback and patches to the Subversion
developer community, instead of distributing your private version of this book.

The online home of this book's development and most of the volunteer-driven trandation efforts regarding it is ht-
tp://svnbook.red-bean.com. There you can find links to the latest releases and tagged versions of the book in various formats, as
well as instructions for accessing the book's Subversion repository (where its DocBook XML source code lives). Feedback is wel-
comed—encouraged, even. Please submit al comments, complaints, and patches against the book sources to
<svnbook- dev@ ed- bean. conp.

XX

http://svnbook.red-bean.com
http://svnbook.red-bean.com

Preface

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors would like to thank Brian
Behlendorf and CollabNet for the vision to fund such arisky and ambitious new open source project; Jim Blandy for the origina

SubvePi on name and design—we love you, Jim; and Karl Fogel for being such a good friend and a great community leader, in that
order.

Thanks to O'Rellly and the team of professional editors who have helped us polish this text at various stages of its evolution:
Chuck Toporek, Linda Mui, Tatiana Apandi, Mary Brady, and Mary Treseler. Y our patience and support has been tremendous.

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions, and patches. An exhaust-
ive listing of those folks' names would be impractical to print and maintain here, but may their names live on forever in this book's
version control history!

40h, and thanks, Karl, for being too overworked to write this book yourself.

XXi

Chapter 1. Fundamental Concepts

This chapter is ashort, casual introduction to Subversion and its approach to version control. We begin with a discussion of general
version control concepts, work our way into the specific ideas behind Subversion, and show some simple examples of Subversion
inuse.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind that Subversion
can manage any sort of file collection—it's not limited to hel ping computer programmers.

Version Control Basics

A version control system (or revision control system) is a system that tracks incremental versions (or revisions) of files and, in
some cases, directories over time. Of course, merely tracking the various versions of a user's (or group of users) files and director-
iesisn't very interesting in itself. What makes a version control system useful is the fact that it allows you to explore the changes
which resulted in each of those versions and facilitates the arbitrary recall of the same.

In this section, well introduce some fairly high-level version control system components and concepts. Well limit our discussion

to modern version control systems—in today's interconnected world, there is very little point in acknowledging version control sys-
tems which cannot operate across wide-area networks.

The Repository

At the core of the version control system is a repository, which is the central store of that system's data. The repository usually
stores information in the form of a filesystem tree—a hierarchy of files and directories. Any number of clients connect to the repos-
itory, and then read or write to these files. By writing data, a client makes the information available to others; by reading data, the
client receivesinformation from others. Figure 1.1, “A typical client/server system” illustrates this.

Figure 1.1. A typical client/server system
Repository

EDD

Client Client

Why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository is a kind of file
server, but it's not your usual breed. What makes the repository special isthat as the files in the repository are changed, the reposit-
ory remembers each version of those files.

When a client reads data from the repository, it normally sees only the latest version of the filesystem tree. But what makes a ver-
sion control client interesting isthat it also has the ability to request previous states of the filesystem from the repository. A version
control client can ask historical questions such as “What did this directory contain last Wednesday?' and “Who was the last person
to change thisfile, and what changes did he make?’ These are the sorts of questions that are at the heart of any version control sys-

1

Fundamental Concepts

tem.

The Working Copy

A version control system's value comes from the fact that it tracks versions of files and directories, but the rest of the software uni-
verse doesn't operate on “versions of files and directories’. Most software programs understand how to operate only on a single
version of a specific type of file. So how does a version control user interact with an abstract—and, often, remote—repository full
of multiple versions of various files in a concrete fashion? How does his or her word processing software, presentation software,
source code editor, web design software, or some other program—all of which trade in the currency of simple data files—get ac-
cess to such files? The answer is found in the version control construct known as aworking copy.

A working copy is, quite literally, alocal copy of a particular version of a user's VCS-managed data upon which that user isfreeto
work. Working copies™ appear to other software just as any other local directory full of files, so those programs don't have to be
“version-control-aware” in order to read from and write to that data. The task of managing the working copy and communicating
changes made to its contents to and from the repository falls squarely to the version control system's client software.

Versioning Models

If the primary mission of aversion control system isto track the various versions of digital information over time, a very close sec-
ondary mission in any modern version control system is to enable collaborative editing and sharing of that data. But different sys-
tems use different strategies to achieve this. It's important to understand these different strategies, for a couple of reasons. First, it
will help you compare and contrast existing version control systems, in case you encounter other systems similar to Subversion.
Beyond that, it will also help you make more effective use of Subversion, since Subversion itself supports a couple of different
ways of working.

The problem of file sharing

All version control systems have to solve the same fundamental problem: how will the system allow usersto share information, but
prevent them from accidentally stepping on each other's feet? It's all too easy for users to accidentally overwrite each other's
changes in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two coworkers, Harry and Sally. They each
decide to edit the same repository file at the same time. If Harry saves his changes to the repository firgt, it's possible that (a few
moments later) Sally could accidentally overwrite them with her own new version of the file. While Harry's version of the file
won't be lost forever (because the system remembers every change), any changes Harry made won't be present in Sally's newer ver-
sion of the file, because she never saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from
the latest version of the file—and probably by accident. Thisis definitely a situation we want to avoid!

Figure 1.2. The problem to avoid

Theterm “working copy” can be generally applied to any one file version's local instance. When most folks use the term, though, they are referring to a whole dir-
ectory tree containing files and subdirectories managed by the version control system.

2

Fundamental Concepts

Iwo users read the same file

Repository
A

I_ Red Read —1
2]

Harry Sally

Haery pubiishes his version first
Repository

They both begin fo edit their copies
Repository

b

Harry Sally
Sally accidentally averwrites Harry'S version
Repasitary

Whrite —J‘

£]

Harry Sally Harry

The lock-modify-unlock solution

Many version control systems use a lock-modify-unlock model to address the problem of many authors clobbering each other's
work. In this model, the repository allows only one person to change afile at a time. This exclusivity policy is managed using
locks. Harry must “lock” a file before he can begin making changes to it. If Harry has locked a file, Sally cannot also lock it, and
therefore cannot make any changes to that file. All she can do is read the file and wait for Harry to finish his changes and release
his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock
solution” demonstrates this simple solution.

Figure 1.3. Thelock-modify-unlock solution

Fundamental Concepts

Harey “lacks” file 4, then copies While Harry edits, Sally's lack
it for editing attempt faits
Repository Repository

A A

Lock |
I tend Lock
]

Harry Sally Harry Sally
Harry writes his version, then Nowe Sally can lock, read, and
releases his lock edit the lotest version
Repository Repository

. :%l
5

Harry Sally Harry Sally

The problem with the lock-modify-unlock model is that it's a bit restrictive and often becomes a roadblock for users:

Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it. Meanwhile, because
Saly is till waiting to edit the file, her hands are tied. And then Harry goes on vacation. Now Sally has to get an administrator
to release Harry's lock. The situation ends up causing alot of unnecessary delay and wasted time.

Locking may cause unnecessary serialization. What if Harry is editing the beginning of atext file, and Sally simply wants to edit
the end of the same file? These changes don't overlap at all. They could easily edit the file simultaneously, and no great harm
would come, assuming the changes were properly merged together. There's no need for them to take turns in this situation.

Locking may create a false sense of security. Suppose Harry locks and edits file A, while Sally simultaneously locks and edits
file B. But what if A and B depend on one ancther, and the changes made to each are semantically incompatible? Suddenly A
and B don't work together anymore. The locking system was powerless to prevent the problem—yet it somehow provided afalse
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a safe, insulated task, and thus
they need not bother discussing their incompatible changes early on. Locking often becomes a substitute for real communication.

The copy-modify-merge solution

Subversion, CVS, and many other version control systems use a copy-modify-merge model as an aternative to locking. In this
model, each user's client contacts the project repository and creates a persona working copy. Users then work simultaneously and

)

Fundamental Concepts

independently, modifying their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work
concurrently and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry
attempts to save his changes later, the repository informs him that his file A is out of date. In other words, file A in the repository
has somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his work-
ing copy of file A. Chances are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-modi-
fy-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Twio users copy the same file They bath begin fa edit their copies

Repository Repository

A A
Read Reod j

)]
Harry Sally Harry Sally
Sally publishes her version first Harry gelrs an “oul-of-dale " error

Repaository Repository

Harry Sally Harry Sally

Figure 1.5. The copy-modify-mer ge solution (continued)

Fundamental Concepts

Harry compares the \atest version A mew merged version is created
T his oum
Repository Repository

™
A
Feod
[~ [™= [
GINE b

Harry Sally Harry Sally
[he merged version is published Now both wsers have each
others” changes
Repository Repository
[,

— Wnte —] wead

Sally Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and it's usually not
much of a problem. When Harry asks his client to merge the latest repository changes into his working copy, his copy of file A is
somehow flagged as being in a state of conflict: he'll be able to see both sets of conflicting changes and manually choose between
them. Note that software can't automatically resolve conflicts; only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he can
safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can work in parallel,
never waiting for one another. When they work on the same files, it turns out that most of their concurrent changes don't overlap at
all; conflicts are infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time lost by a locking
system.

In the end, it al comes down to one critical factor: user communication. When users communicate poorly, both syntactic and se-
mantic conflicts increase. No system can force users to communicate perfectly, and no system can detect semantic conflicts. So
there's no point in being lulled into a false sense of security that alocking system will somehow prevent conflicts; in practice, lock-
ing seemsto inhibit productivity more than anything else.

When Locking Is Necessary
While the lock-madify-unlock model is considered generally harmful to collaboration, sometimes locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable—that is, that the majority of
the files in the repository are line-based text files (such as program source code). But for files with binary formats, such as

Fundamental Concepts

artwork or sound, it's often impossible to merge conflicting changes. In these situations, it really is necessary for users to take
strict turns when changing the file. Without serialized access, somebody ends up wasting time on changes that are ultimately
discarded.

While Subversion is primarily a copy-modify-merge system, it still recognizes the need to lock an occasional file, and thus
provides mechanisms for this. We discuss this feature in the section called “Locking”.

Version Control the Subversion Way

We've mentioned already that Subversion is a modern, network-aware version control system. As we described in the section
called “Version Control Basics’ (our high-level version control overview), a repository serves as the core storage mechanism for
Subversion's versioned data, and it's via working copies that users and their software programs interact with that data. In this sec-
tion, we'll begin to introduce the specific ways in which Subversion implements version control.

Subversion Repositories

Subversion implements the concept of a version control repository much as any other modern version control system would. Un-
like aworking copy, a Subversion repository is an abstract entity, able to be operated upon almost exclusively by Subversion's own
libraries and tools. As most of a user's Subversion interactions involve the use of the Subversion client and occur in the context of a
working copy, we spend the majority of this book discussing the Subversion working copy and how to manipulate it. For the finer
details of the repository, though, check out Chapter 5, Repository Administration.

Revisions

A Subversion client commits (that is, communicates the changes made to) any number of files and directories as a single atomic
transaction. By atomic transaction, we mean simply this: either all of the changes are accepted into the repository, or none of them
is. Subversion tries to retain this atomicity in the face of program crashes, system crashes, network problems, and other users' ac-
tions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each revision is as-
signed a unique natural number, one greater than the number assigned to the previous revision. Theinitial revision of afreshly cre-
ated repository is numbered 0 and consists of nothing but an empty root directory.

Figure 1.6, “Tree changes over time” illustrates a nice way to visualize the repository. Imagine an array of revision numbers, start-

ing at 0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a “ snapshot” of
the way the repository looked after a commit.

Figure 1.6. Tree changes over time

Fundamental Concepts

/= L
F | D M
| AL LAl

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to the entire repository tree, not individual files.
Each revision number selects an entire tree, a particular state of the repository after some committed change. Another way to
think about it is that revision N represents the state of the repository filesystem after the Nth commit. When Subversion users
talk about “revision 5 of f 00. ¢,” they realy mean “f 00. ¢ asit appearsin revision 5.” Notice that in general, revisions N
and M of afile do not necessarily differ! Many other version control systems use per-file revision numbers, so this concept
may seem unusual at first. (Former CV S users might want to see Appendix B, Subversion for CVS Users for more details.)

Addressing the Repository

Subversion client programs use URL s to identify versioned files and directories in Subversion repositories. For the most part, these
URL s use the standard syntax, allowing for server names and port numbersto be specified as part of the URL.

* http://svn.example.com/svn/project
* http://svn.example.com:9834/repos

Subversion repository URLs aren't limited to only the ht t p: / / variety. Because Subversion offers several different ways for its
clients to communicate with its servers, the URLs used to address the repository differ subtly depending on which repository ac-
cess mechanism is employed. Table 1.1, “Repository access URLS’ describes how different URL schemes map to the available re-
pository access methods. For more details about Subversion's server options, see Chapter 6, Server Configuration.

Table1.1. Repository access URL s

Schema Access method
file:/1/ Direct repository access (on local disk)

8

Fundamental Concepts

Schema Access method

http:// Access via WebDAV protocol to Subversion-aware Apache
server

https:// Sameashtt p: //, but with SSL encryption

svn:// Access via custom protocol to an svnser ve server

svn+ssh:// Sameassvn: //, but through an SSH tunnel

Subversion's handling of URLSs has some notable nuances. For example, URLs containing thefi | e: // access method (used for
local repositories) must, in accordance with convention, have either a server name of | ocal host or no server name at all:

« file//Ivar/svn/repos
« file://localhost/var/svn/repos

Also, users of thefi | e: // scheme on Windows platforms will need to use an unofficially “standard” syntax for accessing repos-
itories that are on the same machine, but on a different drive than the client's current working drive. Either of the two following
URL path syntaxes will work, where X is the drive on which the repository resides:

« file/lIX:Ivarlsvn/repos
« file///X|/var/svn/repos

Note that a URL uses forward slashes even though the native (non-URL) form of a path on Windows uses backslashes. Also note
that whenusingthefil e: /// X|/ form at the command line, you need to quote the URL (wrap it in quotation marks) so that the
vertical bar character is not interpreted as a pipe.

you attempt to view afil e: // URL in aregular web browser, it reads and displays the contents of the file at that
location by examining the filesystem directly. However, Subversion's resources exist in a virtua filesystem (see the
section called “Repository Layer”), and your browser will not understand how to interact with that filesystem.

<> You cannot use Subversion'sfi | e: // URLsin aregular web browser the way typical fi |l e: // URLs can. When

The Subversion client will automatically encode URLSs as necessary, just like a web browser does. For example, the URL ht -
tp://host/path with space/ project/ espafia — which contains both spaces and upper-ASCII characters — will be
automatically interpreted by Subversion as if you'd provided ht -
tp: // host/ pat h%20w t h920space/ pr oj ect/ espa¥%3¥Bla. If the URL contains spaces, be sure to place it within
guotation marks at the command line so that your shell treats the whole thing as a single argument to the program.

There is one notable exception to Subversion's handling of URLs which also appliesto its handling of local pathsin many contexts,
too. If the final path component of your URL or local path contains an at sign (@, you need to use a specia syntax—described in
the section called “Peg and Operative Revisions’—in order to make Subversion properly address that resource.

In Subversion 1.6, a new caret (") notation was introduced as a shorthand for “the URL of the repository's root directory”. For ex-
ample, you can usethe/ t ags/ bi gsandwi ch/ to refer to the URL of the/ t ags/ bi gsandwi ch directory in the root of the
repository. Note that this URL syntax works only when your current working directory is a working copy—the command-line cli-
ent knows the repository's root URL by looking at the working copy's metadata. Also note that when you wish to refer precisely to
the root directory of the repository, you must do so using */ (with the trailing slash character), not merely *.

Subversion Working Copies

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You can edit these

Fundamental Concepts

files however you wish, and if they're source code files, you can compile your program from them in the usual way. Y our working
copy is your own private work area: Subversion will never incorporate other people's changes, nor make your own changes avail-
able to others, until you explicitly tell it to do so. Y ou can even have multiple working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work properly, Subversion provides you
with commands to “publish” your changes to the other people working with you on your project (by writing to the repository). If
other people publish their own changes, Subversion provides you with commands to merge those changes into your working copy
(by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these commands. In par-
ticular, each working copy contains a subdirectory named . svn, also known as the working copy's administrative directory. The
files in the administrative directory help Subversion recognize which of your versioned files contain unpublished changes, and
which files are out of date with respect to others work.

Prior to version 1.7, Subversion maintained . svn administrative subdirectories in every versioned directory of your

/ working copy. Subversion 1.7 offers a completely new approach to how working copy metadata is stored and main-
tained, and chief among the visible changes to this approach is that each working copy now has only one . svn sub-
directory which is an immediate child of the root of that working copy.

How the working copy works

For each file in aworking directory, Subversion records (among other things) two essential pieces of information:

» What revision your working fileis based on (thisis called the file's working revision)

A timestamp recording when the local copy was last updated by the repository
Given thisinformation, by talking to the repository, Subversion can tell which of the following four states aworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the repository since its
working revision. An svn commit of the file will do nothing, and an svn update of the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the repository since
you last updated. There are local changes that have not been committed to the repository; thus an svn commit of the file will
succeed in publishing your changes, and an svn update of the file will do nothing.

Unchanged, and out of date
The file has not been changed in the working directory, but it has been changed in the repository. The file should eventually be
updated in order to make it current with the latest public revision. An svn commit of the file will do nothing, and an svn up-
date of thefile will fold the latest changes into your working copy.

Locally changed, and out of date
The file has been changed both in the working directory and in the repository. An svn commit of the file will fail with an
“out-of-date” error. The file should be updated first; an svn update command will attempt to merge the public changes with
the local changes. If Subversion can't complete the merge in a plausible way automatically, it leavesit to the user to resolve the
conflict.

Fundamental working copy interactions

A typical Subversion repository often holds the files (or source code) for several projects; usually, each project is a subdirectory in

10

Fundamental Concepts

the repository's filesystem tree. In this arrangement, a user's working copy will usually correspond to a particular subtree of the re-
pository.

For example, suppose you have a repository that contains two software projects, pai nt and cal c. Each project livesin its own
top-level subdirectory, as shown in Figure 1.7, “The repository's filesystem”.

Figure1.7. Therepository'sfilesystem

[
b

- Makefile

¥

p

L 3

integer.c

L L

button.c

Makefile

/Lol

fanvas.C

- brush.c

To get aworking copy, you must check out some subtree of the repository. (The term check out may sound like it has something to
do with locking or reserving resources, but it doesn't; it smply creates a working copy of the project for you.) For example, if you
check out / cal ¢, you will get aworking copy like this:

$ svn checkout http://svn.exanpl e.comrepos/calc
A cal ¢/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 56.

$1s -Acalc

g/akefi le button.c integer.c .svn/

11

Fundamental Concepts

Thelist of letter Asin the left margin indicates that Subversion is adding a number of items to your working copy. Y ou now have a
personal copy of the repository's/ cal ¢ directory, with one additional entry—. svn—uwhich holds the extra information needed
by Subversion, as mentioned earlier.

Suppose you make changesto but t on. c. Sincethe . svn directory remembers the file's original modification date and contents,
Subversion can tell that you've changed the file. However, Subversion does not make your changes public until you explicitly tell it
to. The act of publishing your changes is more commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's svn commit command:

$ svn commit button.c -m"Fixed a typo in button.c."
Sendi ng button.c

Transmitting file data .

Committed revision 57.

Now your changes to but t on. ¢ have been committed to the repository, with a note describing your change (namely, that you
fixed atypo). If another user checks out aworking copy of / cal ¢, shewill see your changes in the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time you did. When you commit
your changeto but t on. c, Sally'sworking copy isleft unchanged; Subversion modifies working copies only at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the svn update command. This will
incorporate your changes into her working copy, as well as any others that have been committed since she checked it out.

$ pwd

/ hone/sal | y/ cal c

$1s -A

Makefile button.c integer.c .svn/
$ svn update

Updating '.":

U button.c

gpdat ed to revision 57.

The output from the svn update command indicates that Subversion updated the contents of but t on. c. Note that Sally didn't
need to specify which files to update; Subversion uses the information in the . svn directory as well as further information in the
repository, to decide which files need to be brought up to date.

Mixed-revision working copies

Asageneral principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the ability to have a working
copy containing files and directories with a mix of different working revision numbers. Subversion working copies do not always
correspond to any single revision in the repository; they may contain files from several different revisions. For example, suppose
you check out aworking copy from a repository whose most recent revision is 4:

calc/
Makefile:4
integer.c:4
button.c:4

12

Fundamental Concepts

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose you make a change to
but t on. ¢, and commit that change. Assuming no other commits have taken place, your commit will create revision 5 of the re-
pository, and your working copy will now look like this:

calc/
Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits achangetoi nt eger . c, creating revision 6. If you use svn update to bring your work-
ing copy up to date, it will look likethis:

cac/
Makefile:6
integer.c.6
button.c:6

Sally's change to i nt eger . ¢ will appear in your working copy, and your change will still be present in but t on. c. In this ex-
ample, the text of Makef i | e isidentical in revisions 4, 5, and 6, but Subversion will mark your working copy of Makef i | e with
revision 6 to indicate that it is still current. So, after you do a clean update at the top of your working copy, it will generally corres-
pond to exactly one revision in the repository.

Updates and commits are separate

One of the fundamental rules of Subversion isthat a*“push” action does not cause a“pull” nor vice versa. Just because you're ready
to submit new changes to the repository doesn't mean you're ready to receive changes from other people. And if you have new
changes till in progress, svn update should gracefully merge repository changes into your own, rather than forcing you to publish
them.

The main side effect of thisrule isthat it means aworking copy has to do extra bookkeeping to track mixed revisions as well as be
tolerant of the mixture. It's made more complicated by the fact that directories themselves are versioned.

For example, suppose you have aworking copy entirely at revision 10. Y ou edit thefilef 0o. ht M and then perform an svn com-
mit, which creates revision 15 in the repository. After the commit succeeds, many new users would expect the working copy to be
entirely at revision 15, but that's not the case! Any number of changes might have happened in the repository between revisions 10
and 15. The client knows nothing of those changes in the repository, since you haven't yet run svn update, and svn commit doesn't
pull down new changes. If, on the other hand, svn commit were to automatically download the newest changes, it would be pos-
sible to set the entire working copy to revision 15—but then we'd be breaking the fundamental rule of “push” and “pull” remaining
separate actions. Therefore, the only safe thing the Subversion client can do is mark the one file—f 0o0. ht m —as being at revi-
sion 15. The rest of the working copy remains at revision 10. Only by running svn update can the latest changes be downloaded
and the whole working copy be marked asrevision 15.

Mixed revisions are normal

The fact is, every time you run svn commit your working copy ends up with some mixture of revisions. The things you just com-
mitted are marked as having larger working revisions than everything else. After several commits (with no updates in between),
your working copy will contain a whole mixture of revisions. Even if you're the only person using the repository, you will still see

13

Fundamental Concepts

this phenomenon. To examine your mixture of working revisions, use the svn status command with the - - ver bose (- v) option
(see the section called “ See an overview of your changes’ for more information).

Often, new users are completely unaware that their working copy contains mixed revisions. This can be confusing, because many
client commands are sensitive to the working revision of the item they're examining. For example, the svn log command is used to
display the history of changes to a file or directory (see the section called “Generating a List of Historical Changes’). When the
user invokes this command on a working copy object, he expects to see the entire history of the object. But if the object's working
revision is quite old (often because svn update hasn't been run in a long time), the history of the older version of the object is
shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly backdate (or update to a revision older
than the one you already have) portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 2, Basic
Usage. Perhaps you'd like to test an earlier version of a submodule contained in a subdirectory, or perhaps you'd like to figure out

when a bug first came into existence in a specific file. Thisis the “time machine” aspect of a version control system—the feature
that allows you to move any portion of your working copy forward and backward in history.

Mixed revisions have limitations
However you make use of mixed revisionsin your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of afile or directory that isn't fully up to date. If a newer version of the item existsin the re-
pository, your attempt to delete will be rejected to prevent you from accidentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to adirectory unlessit's fully up to date. You'll learn about attaching “ properties’ to
items in Chapter 3, Advanced Topics. A directory's working revision defines a specific set of entries and properties, and thus com-
mitting a property change to an out-of-date directory may destroy properties you've not yet seen.

Finally, beginning in Subversion 1.7, you cannot by default use a mixed-revision working copy as the target of a merge operation.
(This new requirement was introduced to prevent common problems which stem from doing so.)

Summary

We covered a number of fundamental Subversion conceptsin this chapter:

« Weintroduced the notions of the central repository, the client working copy, and the array of repository revision trees.

* We saw some simple examples of how two collaborators can use Subversion to publish and receive changes from one another,
using the “ copy-modify-merge” model.

» Wetalked ahit about the way Subversion tracks and manages information in aworking copy.

At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this knowledge, you
should now be ready to move into the next chapter, which is a detailed tour of Subversion's commands and features.

14

Chapter 2. Basic Usage

Theory isuseful, but its application isjust plain fun. Let's move now into the details of using Subversion. By the time you reach the
end of this chapter, you will be able to perform al the tasks you need to use Subversion in a normal day's work. You'll start with
getting your files into Subversion, followed by an initial checkout of your code. Well then walk you through making changes and
examining those changes. You'll also see how to bring changes made by others into your working copy, examine them, and work
through any conflicts that might arise.

This chapter will not provide exhaustive coverage of al of Subversion's commands—rather, it's a conversational introduction to the
most common Subversion tasks that you'll encounter. This chapter assumes that you've read and understood Chapter 1, Funda-
mental Concepts and are familiar with the general model of Subversion. For a complete reference of all commands, see Chapter 9,
Subversion Complete Reference.

Also, this chapter assumes that the reader is seeking information about how to interact in a basic fashion with an existing Subver-
sion repository. No repository means no working copy; no working copy means not much of interest in this chapter. There are
many Internet sites which offer free or inexpensive Subversion repository hosting services. Or, if you'd prefer to set up and admin-
ister your own repositories, check out Chapter 5, Repository Administration. But don't expect the examples in this chapter to work
without the user having access to a Subversion repository.

Finally, any Subversion operation that contacts the repository over a network may potentially require that the user authenticate. For
the sake of simplicity, our examples throughout this chapter avoid demonstrating and discussing authentication. Be aware that if
you hope to apply the knowledge herein to an existing, rea-world Subversion instance, you'll probably be forced to provide at |east
a username and password to the server. See the section called “Client Credentials’ for a detailed description of Subversion's hand-
ling of authentication and client credentials.

Help!

It goes without saying that this book exists to be a source of information and assistance for Subversion users new and old. Conveni-
ently, though, the Subversion command-line is self-documenting, aleviating the need to grab a book off the shelf (wooden, virtual,
or otherwise). The svn help command is your gateway to that built-in documentation:

$ svn hel p

Subversion command-line client, version 1.7.0.

Type 'svn hel p <subcommand>' for help on a specific subcomand.

Type 'svn --version' to see the program version and RA nodul es
or 'svn --version --quiet' to see just the version number.

Mbst subcommands take file and/or directory argunents, recursing
on the directories. |If no argunments are supplied to such a
comand, it recurses on the current directory (inclusive) by default.

Avai | abl e subcomuands:
add
bl ame (praise, annotate, ann)
cat

As described in the previous output, you can ask for help on a particular subcommand by running svn hel p SUBCOVIVAND.
Subversion will respond with the full usage message for that subcommand, including its syntax, options, and behavior:

$ svn help help
help (?, h): Describe the usage of this programor its subcomrands.

15

Basic Usage

usage: hel p [SUBCOMVAND. . .]

A obal options:
--user name ARG : specify a usernane ARG
--password ARG : specify a password ARG

Options and Switches and Flags, Oh My!

The Subversion command-line client has numerous command modifiers. Some folks refer to such things as “switches’ or
“flags’—in this book, we'll call them “options’. Y ou'll find the options supported by a given svn subcommand, plus a set of
options which are globally supported by all subcommands, listed near the bottom of the built-in usage message for that sub-
command.

Subversion's options have two distinct forms: short options are a single hyphen followed by a single letter, and long options
consist of two hyphens followed by several letters and hyphens (e.g., -s and - -t hi s-i s-a-1 ong-opti on, respect-
ively). Every option has at least one long format. Some, such as the - - changel i st option, feature an abbreviated long-
format alias (- - cl , in this case). Only certain options—generally the most-used ones—have an additional short format. To
maintain clarity in this book, we usually use the long form in code examples, but when describing options, if there's a short
form, we'll provide the long form (to improve clarity) and the short form (to make it easier to remember). Use the form
you're more comfortable with when executing your own Subversion commands.

Many Unix-based distributions of Subversion include manual pages of the sort that can be invoked using the man program, but
those tend to carry only pointers to other sources of real help, such as the project's website and to the website which hosts this
book. Also, several companies offer Subversion help and support, too, usually via a mixture of web-based discussion forums and
fee-based consulting. And of course, the Internet holds a decade's worth of Subversion-related discussions just begging to be loc-
ated by your favorite search engine. Subversion help is never too far away.

Getting Data into Your Repository

You can get new files into your Subversion repository in two ways. svn import and svn add. We'll discuss svn import now and
will discuss svn add later in this chapter when we review atypical day with Subversion.

Importing Files and Directories

The svn import command is a quick way to copy an unversioned tree of filesinto arepository, creating intermediate directories as
necessary. svn import doesn't require a working copy, and your files are immediately committed to the repository. Y ou typically
use this when you have an existing tree of files that you want to begin tracking in your Subversion repository. For example:

$ svn inport /path/to/mytree \
http://svn. exanpl e. conl svn/ repo/ sone/ proj ect \
-m*"lnitial inmport”

Addi ng nytree/ foo.c
Addi ng nytree/ bar.c
Addi ng nytree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Conmitted revision 1.

16

Basic Usage

The previous example copied the contents of the local directory nyt r ee into the directory sone/ pr oj ect in the repository.
Note that you didn't have to create that new directory first—svn import does that for you. Immediately after the commit, you can
see your datain the repository:

$ svn list http://svn.exanpl e.conl svn/repo/ sone/ proj ect
bar. c

foo.c

subdir/

$

Note that after the import is finished, the original local directory is not converted into a working copy. To begin working on that
datain aversioned fashion, you still need to create a fresh working copy of that tree.

Recommended Repository Layout

Subversion provides the ultimate flexibility in terms of how you arrange your data. Because it simply versions directories and files,
and because it ascribes no particular meaning to any of those objects, you may arrange the data in your repository in any way that
you choose. Unfortunately, this flexibility also means that it's easy to find yourself “lost without aroadmap” as you attempt to nav-
igate different Subversion repositories which may carry completely different and unpredictable arrangements of the data within
them.

To counteract this confusion, we recommend that you follow a repository layout convention (established long ago, in the nascency
of the Subversion project itself) in which a handful of strategically named Subversion repository directories convey valuable mean-
ing about the data they hold. Most projects have a recognizable “main ling”, or trunk, of development; some branches, which are
divergent copies of development lines; and some tags, which are named, stable snapshots of a particular line of development. So
we first recommend that each project have a recognizable project root in the repository, a directory under which al of the ver-
sioned information for that project—and only that project—Ilives. Secondly, we suggest that each project root contain at r unk
subdirectory for the main development line, abr anches subdirectory in which specific branches (or collections of branches) will
be created, and at ags subdirectory in which specific tags (or collections of tags) will be created. Of course, if arepository houses
only asingle project, the root of the repository can serve as the project root, too.

Here are some examples:

$ svn list file:///var/svn/single-project-repo

trunk/

branches/

t ags/

$ svn list file:///var/svn/multi-project-repo
proj ect- A

proj ect - B

$ svn list file:///var/svn/multi-project-repo/project-A
t runk/

branches/

t ags/

$

We talk much more about tags and branches in Chapter 4, Branching and Merging. For details and some advice on how to set up
repositories when you have multiple projects, see the section called “Repository Layout”. Finally, we discuss project roots morein
the section called “Planning Y our Repository Organization”.

What's In a Name?

17

Basic Usage

Subversion tries hard not to limit the type of data you can place under version control. The contents of files and property values are
stored and transmitted as binary data, and the section called “File Content Type” tells you how to give Subversion a hint that
“textual” operations don't make sense for a particular file. There are afew places, however, where Subversion places restrictions on
information it stores.

Subversion internally handles certain bits of data—for example, property names, pathnames, and log messages—as UTF-
8-encoded Unicode. This is not to say that all your interactions with Subversion must involve UTF-8, though. As a general rule,
Subversion clients will gracefully and transparently handle conversions between UTF-8 and the encoding system in use on your
compurter, if such a conversion can meaningfully be done (which is the case for most common encodings in use today).

In WebDAV exchanges and older versions of some of Subversion's administrative files, paths are used as XML attribute values,
and property namesin XML tag names. This means that pathnames can contain only legal XML (1.0) characters, and properties are
further limited to ASCII characters. Subversion also prohibits TAB, CR, and LF characters in path names to prevent paths from be-
ing broken up in diffs or in the output of commands such as svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a problem. As long as your locale settings are
compatible with UTF-8 and you don't use control characters in path names, you should have no trouble communicating with Sub-
version. The command-line client adds an extra bit of help—to create “legally correct” versions for internal use it will automatic-
ally escapeillegal path characters as needed in URL s that you type.

Creating a Working Copy

Most of the time, you will start using a Subversion repository by performing a checkout of your project. Checking out a directory
from a repository creates a working copy of that directory on your local machine. Unless otherwise specified, this copy contains
the youngest (that is, most recently created or modified) versions of the directory and its children found in the Subversion reposit-
ory:

$ svn checkout http://svn.exanpl e.conm svn/repo/trunk
A t r unk/ READVE

A t runk/ I NSTALL

A trunk/src/ main.c

A trunk/ src/ header. h

Ch
$

ecked out revision 8810.

Although the preceding example checks out the trunk directory, you can just as easily check out a deeper subdirectory of areposit-
ory by specifying that subdirectory's URL as the checkout URL:

$ svn checkout http://svn.exanpl e.com svn/repo/trunk/src
A src/main.c

A src/ header. h

A src/lib/hel pers.c

'C':ﬁecked out revision 8810.
$

Since Subversion uses a copy-modify-merge model instead of lock-modify-unlock (see the section called “Versioning Models’),
you can immediately make changes to the files and directories in your working copy. Y our working copy is just like any other col-
lection of files and directories on your system. You can edit the files inside it, rename it, even delete the entire working copy and
forget about it.

18

Basic Usage

Q While your working copy is “just like any other collection of files and directories on your system,” you can edit files

at will, but you must tell Subversion about everything else that you do. For example, if you want to copy or move an
item in aworking copy, you should use svn copy or svn move instead of the copy and move commands provided by
your operating system. Wel'l talk more about them later in this chapter.

Unless you're ready to commit the addition of a new file or directory or changes to existing ones, there's no need to further notify
the Subversion server that you've done anything.

What Is This .svn Directory?

The topmost directory of aworking copy—and prior to version 1.7, every versioned subdirectory thereof—contains a special
administrative subdirectory named . svn. Usually, your operating system's directory listing commands won't show this sub-
directory, but it is nevertheless an important directory. Whatever you do, don't delete or change anything in the administrat-
ive areal Subversion uses that directory and its contents to manage your working copy.

Notice that in the previous pair of examples, Subversion chose to create a working copy in adirectory named for the final compon-
ent of the checkout URL. This occurs only as a convenience to the user when the checkout URL is the only bit of information
provided to the svn checkout command. Subversion's command-line client gives you additional flexibility, though, allowing you
to optionally specify the local directory name that Subversion should use for the working copy it creates. For example:

®Q: >>r>>%

svn checkout http://svn.exanpl e. com svn/repo/trunk my-worki ng-copy
ny - wor ki ng- copy/ READVE
ny-wor ki ng- copy/ | NSTALL
my-wor ki ng- copy/ src/ mai n. c
my-wor ki ng- copy/ src/ header . h

ecked out revision 8810.

If thelocal directory you specify doesn't yet exist, that's okay—svn checkout will create it for you.

Basic Work Cycle

Subversion has numerous features, options, bells, and whistles, but on a day-to-day basis, odds are that you will use only a few of
them. In this section, we'll run through the most common things that you might find yourself doing with Subversion in the course
of aday'swork.

The typical work cycle looks like this:

. Update your working copy. Thisinvolves the use of the svn update command.

. Make your changes. The most common changes that you'll make are edits to the contents of your existing files. But sometimes

you need to add, remove, copy and move files and directories—the svn add, svn delete, svn copy, and svn move commands
handle those sorts of structural changes within the working copy.

. Review your changes. The svn status and svn diff commands are critical to reviewing the changes you've made in your working

copy.

. Fix your mistakes. Nobody's perfect, so as you review your changes, you may spot something that's not quite right. Sometimes

the easiest way to fix a mistake is start al over again from scratch. The svn revert command restores a file or directory to its

19

Basic Usage

unmodified state.

5. Resolve any conflicts (merge others changes). In the time it takes you to make and review your changes, others might have
made and published changes, too. You'll want to integrate their changes into your working copy to avoid the potential out-
of -dateness scenarios when you attempt to publish your own. Again, the svn update command is the way to do this. If thisres-
ultsin local conflicts, you'll need to resolve those using the svn resolve command.

6. Publish (commit) your changes. The svn commit command transmits your changes to the repository where, if they are accepted,
they create the newest versions of all the things you modified. Now others can see your work, too!

Update Your Working Copy

When working on a project that is being modified via multiple working copies, you'll want to update your working copy to receive
any changes committed from other working copies since your last update. These might be changes that other members of your
project team have made, or they might smply be changes you've made yourself from a different computer. To protect your data,
Subversion won't allow you commit new changes to out-of-date files and directories, so it's best to have the latest versions of all
your project's files and directories before making new changes of your own.

Use svn update to bring your working copy into sync with the latest revision in the repository:

$ svn update

Updating '."':
U foo. c
] bar.c

Updated to revision 2.

In this case, it appears that someone checked in modifications to both f 00. ¢ and bar . ¢ since the last time you updated, and Sub-
version has updated your working copy to include those changes.

When the server sends changes to your working copy via svn update, a letter code is displayed next to each item to let you know
what actions Subversion performed to bring your working copy up to date. To find out what these letters mean, run svn hel p
updat e or see svn update (up) in Chapter 9, Subversion Complete Reference.

Make Your Changes

Now you can get to work and make changes in your working copy. Y ou can make two kinds of changes to your working copy: file
changes and tree changes. Y ou don't need to tell Subversion that you intend to change a file; just make your changes using your
text editor, word processor, graphics program, or whatever tool you would normally use. Subversion automatically detects which
files have been changed, and in addition, it handles binary files just as easily as it handles text files—and just as efficiently, too.
Tree changes are different, and involve changes to a directory's structure. Such changes include adding and removing files, renam-
ing files or directories, and copying files or directories to new locations. For tree changes, you use Subversion operations to
“schedule” files and directories for removal, addition, copying, or moving. These changes may take place immediately in your
working copy, but no additions or removals will happen in the repository until you commit them.

Versioning Symbolic Links

On non-Windows platforms, Subversion is able to version files of the special type symbolic link (or “symlink™). A symlink is
afile that acts as a sort of transparent reference to some other object in the filesystem, allowing programs to read and write to
those objects indirectly by performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion remembers that the file was in fact a symlink, as well

20

Basic Usage

as the object to which the symlink “points.” When that symlink is checked out to another working copy on a non-Windows
system, Subversion reconstructs a real filesystem-level symbolic link from the versioned symlink. But that doesn't in any
way limit the usability of working copies on systems such as Windows that do not support symlinks. On such systems, Sub-
version simply creates a regular text file whose contents are the path to which the original symlink pointed. While that file
can't be used as a symlink on a Windows system, it also won't prevent Windows users from performing their other Subver-
sion-related activities.

Hereis an overview of the five Subversion subcommands that you'll use most often to make tree changes:

svn add FOO

Use this to schedule the file, directory, or symbolic link FOOto be added to the repository. When you next commit, FOO will
become a child of its parent directory. Note that if FOOis a directory, everything underneath FOOwill be scheduled for addi-
tion. If you want only to add FOOitself, passthe - - dept h=enpt y option.

svn del ete FOO

Use this to schedule the file, directory, or symbolic link FOOto be deleted from the repository. If FOOis afile or link, itisim-
mediately deleted from your working copy. If FOO is a directory, it is not deleted, but Subversion schedules it for deletion.
When you commit your changes, FOOwill be entirely removed from your working copy and the repository.l

svn copy FOO BAR

Create a new item BAR as a duplicate of FOO and automatically schedule BAR for addition. When BAR is added to the reposit-
ory on the next commit, its copy history is recorded (as having originally come from FQO). svn copy does not create interme-
diate directories unless you passthe - - par ent s option.

svn nove FOO BAR

This command is exactly the same asrunning svn copy FOO BAR; svn del ete FOO That is, BAR is scheduled for
addition as a copy of FOO, and FOO s scheduled for removal. svn move does not create intermediate directories unless you
passthe - - par ent s option.

svn nkdir FOO

This command is exactly the same as running mkdi r FOO, svn add FOO. That is, a new directory named FOOis created
and scheduled for addition.

Changing the Repository Without a Working Copy

Subversion does offer ways to immediately commit tree changes to the repository without an explicit commit action. In par-
ticular, specific uses of svn mkdir, svn copy, svh move, and svn delete can operate directly on repository URLs as well as
on working copy paths. Of course, as previously mentioned, svn import always makes direct changes to the repository.

There are pros and cons to performing URL-based operations. One obvious advantage to doing so is speed: sometimes,
checking out a working copy that you don't already have solely to perform some seemingly simple action is an overbearing
cost. A disadvantage is that you are generally limited to a single, or single type of, operation at a time when operating dir-
ectly on URLSs. Finaly, the primary advantage of aworking copy isin its utility as a sort of “staging area’ for changes. You
can make sure that the changes you are about to commit make sense in the larger scope of your project before committing
them. And, of course, these staged changes can be as complex or as a simple as they need to be, yet result in but asingle new
revision when committed.

ot course, nothi ng is ever totally deleted from the repository—just from its HEAD revision. You may continue to access the deleted item in previous revisions.
Should you desire to resurrect the item so that it is again present in HEAD, see the section called “ Resurrecting Deleted Items’.

21

Basic Usage

Review Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually a good idea to
take alook at exactly what you've changed. By examining your changes before you commit, you can compose a more accurate log
message (a human-readable description of the committed changes stored alongside those changes in the repository). Y ou may also
discover that you've inadvertently changed afile, and that you need to undo that change before committing. Additionaly, thisis a
good opportunity to review and scrutinize changes before publishing them. You can see an overview of the changes you've made
by using the svn status command, and you can dig into the details of those changes by using the svn diff command.

Look Ma! No Network!

Y ou can use the commands svn status, svn diff, and svn revert without any network access even if your repository is across
the network. This makes it easy to manage and review your changes-in-progress when you are working offline or are other-
wise unable to contact your repository over the network.

Subversion does this by keeping private caches of pristine, unmodified versions of each versioned file inside its working
copy administrative area (or prior to version 1.7, potentially multiple administrative areas). This allows Subversion to re-
port—and revert—loca modifications to those files without network access. This cache (called the text-base) also allows
Subversion to send the user's local modifications during a commit to the server as a compressed delta (or “difference”)
against the pristine version. Having this cache is a tremendous benefit—even if you have a fast Internet connection, it's gen-
erally much faster to send only afil€e's changes rather than the whole file to the server.

See an overview of your changes

To get an overview of your changes, use the svn status command. You'll probably use svn status more than any other Subversion
command.

Because the cvs status command's output was so noisy, and because cvs update not only performs an update, but
also reports the status of your local changes, most CV'S users have grown accustomed to using cvs update to report
their changes. In Subversion, the update and status reporting facilities are completely separate. See the section called
“Distinction Between Status and Update” for more details.

If yourun svn st at us at the top of your working copy with no additional arguments, it will detect and report all file and tree
changes you've made.

$ svn status

? scratch. c

A stuff/I oot

A stuff/l oot/ new. c
D stuff/old.c

M bar.c

$

In its default output mode, svn status prints seven columns of characters, followed by several whitespace characters, followed by a
file or directory name. The first column tells the status of afile or directory and/or its contents. Some of the most common codes
that svn status displays are:

? item
Thefile, directory, or symbolic link i t emis not under version control.

22

Basic Usage

Aitem
Thefile, directory, or symbolic link i t emhas been scheduled for addition into the repository.

Citem
Thefilei t emisin a state of conflict. That is, changes received from the server during an update overlap with local changes
that you have in your working copy (and weren't resolved during the update). Y ou must resolve this conflict before committing
your changes to the repository.

Ditem
Thefile, directory, or symbolic link i t emhas been scheduled for deletion from the repository.

Mitem
The contents of thefilei t emhave been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also hasa - - ver bose (- v) option, which will show you the status of every item in your working copy, even if it has
not been changed:

$ svn status -v

M 44 23 sally README
44 30 sally | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
44 36 harry stuff/things/gloo.c

Thisisthe “long form” output of svn status. The lettersin the first column mean the same as before, but the second column shows
the working revision of the item. The third and fourth columns show the revision in which the item last changed, and who changed
it.

None of the prior invocations to svn status contact the repository—they merely report what is known about the working copy
items based on the records stored in the working copy administrative area and on the timestamps and contents of modified files.
But sometimes it is useful to see which of the items in your working copy have been modified in the repository since the last time
you updated your working copy. For this, svn status offersthe - - show updat es (- u) option, which contacts the repository and
adds information about items that are out of date:

$ svn status -u -v
M * 44 23 sal ly READVE
M 44 20 harry bar. c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuf f/things/bloo.h
St at us agai nst revi sion: 46

23

Basic Usage

Notice in the previous example the two asterisks: if you were to run svn updat e at this point, you would receive changes to
README and t r out . c. Thistells you some very useful information—because one of those itemsis also one that you have locally
modified (the file READVE), you'll need to update and get the servers changes for that file before you commit, or the repository
will reject your commit for being out of date. We discuss thisin more detail later.

svn status can display much more information about the files and directories in your working copy than we've shown here—for an
exhaustive description of svn status and its output, run svn hel p st at us or see svn status (stat, st) in Chapter 9, Subversion
Complete Reference.

Examine the details of your local modifications

Another way to examine your changes is with the svn diff command, which displays differences in file content. When you run
svn diff atthetop of your working copy with no arguments, Subversion will print the changes you've made to human-readable
files in your working copy. It displays those changes in unified diff format, a format which describes changes as “hunks’ (or
“snippets’) of afile's content where each line of text is prefixed with a single-character code: a space, which means the line was
unchanged; aminus sign (-), which means the line was removed from the file; or a plus sign (+), which means the line was added
to the file. In the context of svn diff, those minus-sign- and plus-sign-prefixed lines show how the lines looked before and after
your modifications, respectively.

Here's an example:

$ svn diff
| ndex: bar.c

--- bar.c (revision 3)
+++ bar.c (working copy)
@a@-1,7 +1,12 @@

+#i ncl ude <sys/types. h>
+#i ncl ude <sys/stat. h>
+#i ncl ude <uni std. h>

+

+#i ncl ude <stdio. h>

int main(void) {

- printf("Sixty-four slices of Anmerican Cheese...\n");
+ printf("Sixty-five slices of Anerican Cheese...\n");
return O;

}
| ndex: README

--- README (revision 3)

+++ README (wor ki ng copy)

@ -193,3 +193,4 @@

+Note to self: pick up laundry.

I ndex: stuff/fish.c

--- stuff/fish.c (revision 1)

+++ stuff/fish.c (working copy)
-Welcone to the file known as 'fish'.
-Information on fish will be here soon.

I ndex: stuff/things/bloo.h

Basic Usage

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+t hi ngs about bl oo.

The svn diff command produces this output by comparing your working files against its pristine text-base. Files scheduled for ad-
dition are displayed as files in which every line was added; files scheduled for deletion are displayed as if every line was removed
from those files. The output from svn diff is somehwat compatible with the patch program—more so with the svn patch subcom-
mand introduced in Subversion 1.7. Patch processing commands such as these read and apply patch files (or “patches’), which are
files that describe differences made to one or more files. Because of this, you can share the changes you've made in your working
copy with someone else without first committing those changes by creating a patch file from the redirected output of svn diff:

$ svn diff > patchfile
$

Subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a different
format, specify an external diff program using - - di f f - cnd and pass any additional flags that it needs via the - - ext ensi ons
(- X) option. For example, you might want Subversion to defer its difference calculation and display to the GNU diff program, ask-
ing that program to print local modifications made to the file f 00. ¢ in context diff format (another flavor of difference format)
while ignoring changes made only to the case of the letters used in the file's contents:

$ svn diff --diff-cnd /usr/bin/diff -x "-i" foo.c

Fix Your Mistakes

Suppose while viewing the output of svn diff you determine that all the changes you made to a particular file are mistakes. Maybe
you shouldn't have changed the file at all, or perhaps it would be easier to make different changes starting from scratch. Y ou could
edit the file again and unmake all those changes. You could try to find a copy of how the file looked before you changed it, and
then copy its contents atop your modified version. You could attempt to apply those changes to the file again in reverse using
pat ch - R And there are probably other approaches you could take.

Fortunately in Subversion, undoing your work and starting over from scratch doesn't require such acrobatics. Just use the svn re-
vert command:

$ svn status READVE
M READVE

$ svn revert README
Revert ed ' READVE

% svn status READVE

In this example, Subversion has reverted the file to its premodified state by overwriting it with the pristine version of the file
cached in the text-base area. But note that svn revert can undo any scheduled operation—for example, you might decide that you

25

Basic Usage

don't want to add a new file after all:

$ svn status newfile.txt

? newfile.txt
$ svn add newfile.txt
A newfile.txt

$ svn revert newfile.txt
Reverted 'newfile.txt'
$ svn status newfile.txt
? newfile.txt

$

Or perhaps you mistakenly removed afile from version control:

$ svn status READVE
$ svn del ete READVMVE
D READVE
$ svn revert README
Reverted ' READVE
% svn st atus READVE

The svn revert command offers salvation for imperfect people. It can save you huge amounts of time and energy that would other-
wise be spent manually unmaking changes or, worse, disposing of your working copy and checking out a fresh one just to have a
clean slate to work with again.

Resolve Any Conflicts

We've already seen how svn st at us - u can predict conflicts, but dealing with those conflictsis still something that remains to
be done. Conflicts can occur any time you attempt to merge or integrate (in a very general sense) changes from the repository into
your working copy. By now you know that svn update creates exactly that sort of scenario—that command's very purpose is to
bring your working copy up to date with the repository by merging all the changes made since your last update into your working
copy. So how does Subversion report these conflicts to you, and how do you deal with them?

Supposeyou run svn updat e and you see this sort of interesting output:

$ svn update

Updating '.":
U I NSTALL
G README

Conflict discovered in "bar.c'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nmc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

The U (which stands for “Updated”) and G (for “merGed”) codes are no cause for concern; those files cleanly absorbed changes
from the repository. A file marked with U contains no local changes but was updated with changes from the repository. One
marked with G had local changes to begin with, but the changes coming from the repository didn't overlap with those local
changes.

26

Basic Usage

It's the next few lines which are interesting. First, Subversion reports to you that in its attempt to merge outstanding server changes
into the file bar . c, it has detected that some of those changes clash with local modifications you've made to that file in your
working copy but have not yet committed. Perhaps someone has changed the same line of text you also changed. Whatever the
reason, Subversion instantly flags this file as being in a state of conflict. It then asks you what you want to do about the problem,
allowing you to interactively choose an action to take toward resolving the conflict. The most commonly used options are dis-
played, but you can see all of the options by typing s:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: s

(e) edit - change nerged file in an editor

(df) diff-full - show all changes made to nerged file

(r) resolved - accept nerged version of file

(dc) display-conflict - show all conflicts (ignoring merged version)
(rmc) mine-conflict - accept ny version for all conflicts (sane)
(tc) theirs-conflict - accept their version for all conflicts (sane)
(rmf) mne-full - accept ny version of entire file (even non-conflicts)
(tf) theirs-full - accept their version of entire file (sane)
(p) postpone - mark the conflict to be resolved |ater

(1) Tlaunch - launch external tool to resolve conflict

(s) show all - show this |ist

Select: (p) postpone, (df) diff-full, (e) edit,
(nmc) nmine-conflict, (tc) theirs-conflict,
(s) show all options:

Let's briefly review each of these options before we go into detail on what each option means.

(e) edit
Open thefile in conflict with your favorite editor, as set in the environment variable EDI TOR.

(df) diff-full
Display the differences between the base revision and the conflicted file itself in unified diff format.

(r) resolved
After editing a file, tell svn that you've resolved the conflicts in the file and that it should accept the current con-
tents—basically that you've “resolved” the conflict.

(dc) display-conflict
Display all conflicting regions of the file, ignoring changes which were successfully merged.

(nt) mne-conflict
Discard any newly received changes from the server which conflict with your local changes to the file under review. However,
accept and merge all non-conflicting changes received from the server for that file.

(tc) theirs-conflict
Discard any local changes which conflict with incoming changes from the server for the file under review. However, preserve
al non-conflicting local changesto that file.

(nf) mne-full
Discard al newly received changes from the server for the file under review, but preserve al your local changesfor that file.

27

Basic Usage

(tf) theirs-full
Discard al your local changes to the file under review and use only the newly received changes from the server for that file.

(p) postpone
Leave thefilein aconflicted state for you to resolve after your update is complete.

(1) launch
Launch an external program to perform the conflict resolution. This requires a bit of preparation beforehand.

(s) show all
Show the list of all possible commands you can use in interactive conflict resolution.

Well cover these commands in more detail now, grouping them together by related functionality.

Viewing conflict differences interactively

Before deciding how to attack a conflict interactively, odds are that you'd like to see exactly what is in conflict. Two of the com-
mands available at the interactive conflict resolution prompt can assist you here. The first is the “diff-full” command (df), which
displays al the local modifications to the file in question plus any conflict regions:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mne-conflict, (tc) theirs-conflict,
(s) show all options: df

--- .svn/text-base/sandw ch. txt.svn-base Tue Dec 11 21:33:57 2007
+++ .svn/tnp/tenpfile. 32. tnp Tue Dec 11 21:34:33 2007
@-1 +1,5 @

-Just buy a sandwi ch.
+<<<<<<< . m ne

+Go pi ck up a cheesest eak.

+Bring ne a taco!
+>>>>>>> [r 32

The first line of the diff content shows the previous contents of the working copy (the BASE revision), the next content line is your
change, and the last content line is the change that was just received from the server (usually the HEAD revision).

The second command is similar to the first, but the “display-conflict” (dc) command shows only the conflict regions, not all the
changes made to the file. Additionally, this command uses a dightly different display format for the conflict regions which allows
you to more easily compare the file's contents in those regions as they would appear in each of three states: original and unedited;
with your local changes applied and the server's conflicting changes ignored; and with only the server's incoming changes applied
and your local, conflicting changes reverted.

After reviewing the information provided by these commands, you're ready to move on to the next action.

Resolving conflict differences interactively

There are several different ways to resolve conflicts interactively—two of which allow you to selectively merge and edit changes,
the rest of which allow you to simply pick aversion of the file and move along.

If you wish to choose some combination of your local changes, you can use the “edit” command (e) to manually edit the file with
conflict markersin atext editor (configured per the instructions in the section called “Using External Editors’). After you've edited
thefile, if you're satisfied with the changes you've made, you can tell Subversion that the edited file is no longer in conflict by us-
ing the “resolved” command (r).

28

Basic Usage

Regardless of what your local Unix snob will likely tell you, editing the file by hand in your favorite text editor is a somewhat [ow-
tech way of remedying conflicts (see the section called “Merging conflicts by hand” for a walkthrough). For this reason, Subver-
sion provides the “launch” resolution command (1) to fire up afancy graphical merge tool instead (see the section called “External
merge’).

If you decide that you don't need to merge any changes, but just want to accept one version of the file or the other, you can either
choose your changes (ak.a. “min€”) by using the “mine-full” command (nf) or choose theirs by using the “theirs-full” command

tf).

Finally, there is aso a pair of compromise options available. The “mine-conflict” (nt) and “theirs-conflict” (t ¢) commands in-
struct Subversion to select your local changes or the server'sincoming changes, respectively, asthe “winner” for al conflictsin the
file. But, unlike the “mine-full” and “theirs-full” commands, these commands preserve both your local changes and changes re-
ceived from the server in regions of the file where no conflict was detected.

Postponing conflict resolution

This may sound like an appropriate section for avoiding marital disagreements, but it's actually still about Subversion, so read on.
If you're doing an update and encounter a conflict that you're not prepared to review or resolve, you can type p to postpone resolv-
ing a conflict on afile-by-file basis when you run svn updat e. If you know in advance that you don't want to resolve any con-
flicts interactively, you can passthe - - non- i nt er act i ve option to svn update, and any file in conflict will be marked with a
Cautomatically.

The C (for “Conflicted”) means that the changes from the server overlapped with your own, and now you have to manually choose
between them after the update has completed. When you postpone a conflict resolution, svn typically does three things to assist
you in noticing and resolving that conflict:

» Subversion prints a C during the update and remembers that the file isin a state of conflict.

« |If Subversion considers the file to be mergeable, it places conflict markers—special strings of text that delimit the “sides’ of the
conflict—into the file to visibly demonstrate the overlapping areas. (Subversion uses the svn: m ne-t ype property to decide
whether afileis capable of contextual, line-based merging. See the section called “File Content Type” to learn more.)

 For every conflicted file, Subversion places three extra unversioned filesin your working copy:

filename. nmne
Thisisyour file asit existed in your working copy before you began the update process. This version of the file contains your
local madifications as well as conflict markers. (If Subversion considers the file to be unmergeable, the . mi ne file isn't cre-
ated, since it would be identical to the working file.)

fil ename. r OLDREV
Thisisthefile asit existed in the BASE revision—that is, the unmodified revision of the file in your working copy before you
began the update process—where OLDREV is that base revision humber.

fil ename. r NEWREV
Thisis the file that your Subversion client just received from the server via the update of your working copy, where NEWREV
corresponds to the revision number to which you were updating (HEAD, unless otherwise requested).

For example, Sally makes changes to the file sandwi ch. t xt , but does not yet commit those changes. Meanwhile, Harry com-
mits changes to that same file. Sally updates her working copy before committing and she gets a conflict, which she postpones:

$ svn update

Updating '.":

Conflict discovered in 'sandw ch.txt'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,

29

Basic Usage

(s) show all options: p

C sandw ch. t xt
Updated to revision 2.
Summary of conflicts:

Text conflicts: 1
$1s -1
sandwi ch. t xt
sandwi ch. t xt. m ne
sandwi ch.txt.r1l
sandwi ch. txt.r2

At this point, Subversion will not allow Sally to commit the file sandwi ch. t xt until the three temporary files are removed:

$ svn commit -m"Add a few nore things"
svn: E155015: Commit failed (details follow):
svn: E155015: Aborting conmit: '/hone/sally/svn-work/sandw ch.txt' remains in conflict

If you've postponed a conflict, you need to resolve the conflict before Subversion will allow you to commit your changes. Y ou'll do
this with the svn resolve command and one of several argumentsto the - - accept option.

If you want to choose the version of the file that you last checked out before making your edits, choose the base argument.
If you want to choose the version that contains only your edits, choose the i ne- f ul | argument.

If you want to choose the version that your most recent update pulled from the server (and thus discarding your edits entirely),
choosethet hei rs-ful | argument.

However, if you want to pick and choose from your changes and the changes that your update fetched from the server, merge the
conflicted text “by hand” (by examining and editing the conflict markers within the file) and then choose the wor ki ng argument.

svn resolve removes the three temporary files and accepts the version of the file that you specified with the - - accept option,
and Subversion no longer considers the file to be in a state of conflict:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can become as easy as
falling off abike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the file sandwi ch. t xt at the same
time. Sally commits her changes, and when you go to update your working copy, you get a conflict and you're going to have to edit
sandwi ch. t xt toresolvethe conflict. First, let'stake alook at thefile:

$ cat sandwi ch. t xt
Top piece of bread
Mayonnai se

30

Basic Usage

Lettuce

Tonmat o

Pr ovol one
<LK ., M he
Sal am

Mort adel | a
Prosciutto

Sauer kr aut

Gilled Chicken
SS>SS>S>S> 2

Creol e Mustard

Bott om pi ece of bread

The strings of less-than signs, equals signs, and greater-than signs are conflict markers and are not part of the actual datain con-
flict. You generally want to ensure that those are removed from the file before your next commit. The text between the first two
sets of markers is composed of the changes you made in the conflicting area:

<<<<<<< . m ne
Sal am

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>S>S>S>>S> 12

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be awfully surprised when the sand-
wich arrives and it's not what she wanted. This is where you pick up the phone or walk across the office and explain to Sally that
you can't get sauerkraut from an Italian deli.? Once you've agreed on the changes you will commit, edit your file and remove the
conflict markers:

Top piece of bread
Mayonnai se

Lettuce

Tonmat o

Pr ovol one

Sal am

Mort adel | a

Prosciutto

Creol e Mustard

Bott om pi ece of bread

2And if you ask them for it, they may very well ride you out of town on arail.

31

Basic Usage

Now use svn resolve, and you're ready to commit your changes:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'
$ svn commit -m " Go ahead and use ny sandwi ch, discarding Sally's edits."

Note that svn resolve, unlike most of the other commands we deal with in this chapter, requires that you explicitly list any file-
names that you wish to resolve. In any case, you want to be careful and use svn resolve only when you're certain that you've fixed
the conflict in your file—once the temporary files are removed, Subversion will let you commit the file even if it still contains con-
flict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files that Subversion creates for you in
your working copy—including your file as it was before you updated. You can even use a third-party interactive merging tool to
examine those three files.

Discarding your changes in favor of a newly fetched revision

If you get a conflict and decide that you want to throw out your changes, you can run svn resol ve --accept theirs-
full CONFLI CTED- PATHand Subversion will discard your edits and remove the temporary files:

$ svn update

Updating '."':

Conflict discovered in 'sandw ch.txt'.

Select: (p) postpone, (df) diff-full, (e) edit,
(nmc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C sandw ch. t xt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

$ |I's sandwi ch.*

sandwi ch.txt sandwi ch.txt.mne sandwi ch.txt.r2 sandwich.txt.rl

$ svn resolve --accept theirs-full sandw ch.txt

Resol ved conflicted state of 'sandw ch.txt'

$

Punting: using svn revert

If you decide that you want to throw out your changes and start your edits again (whether this occurs after a conflict or anytime),
just revert your changes:

$ svn revert sandw ch. t xt
Reverted ' sandw ch. t xt'

$ |I's sandwi ch. *

sandw ch. t xt

Note that when you revert a conflicted file, you don't have to use svn resolve.

32

Basic Usage

Commit Your Changes

Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your changes to the repos-
itory.

The svn commit command sends all of your changes to the repository. When you commit a change, you need to supply alog mes-
sage describing your change. Y our log message will be attached to the new revision you create. If your log message is brief, you
may wish to supply it on the command line using the - - nessage (-) option:

$ svn commit -m "Corrected nunber of cheese slices."
Sendi ng sandwi ch. t xt

Transmtting file data .

Conmitted revision 3.

However, if you've been composing your log message in some other text file as you work, you may want to tell Subversion to get
the message from that file by passing its filename asthe value of the- - f i | e (- F) option:

$ svn commit -F | ognsg
Sendi ng sandwi ch. t xt
Transmitting file data .
Committed revision 4.

If you fail to specify either the- - message (-nj or--fil e (- F) option, Subversion will automatically launch your favorite ed-
itor (seetheinformation on edi t or - cd in the section called “Config”) for composing alog message.

If you're in your editor writing a commit message and decide that you want to cancel your commit, you can just quit
_} your editor without saving changes. If you've already saved your commit message, simply delete all the text, save
again, and then abort:

$ svn conmit
Waiting for Emacs...Done

Log nessage unchanged or not specified
(a)bort, (c)ontinue, (e)dit
a

$

The repository doesn't know or care whether your changes make any sense as awhole; it checks only to make sure nobody else has
changed any of the same files that you did when you weren't looking. If somebody has done that, the entire commit will fail with a
message informing you that one or more of your files are out of date:

$ svn commit -m "Add another rule"

Sendi ng rul es.txt

svn: E155011: Commit failed (details follow):

svn: E155011: File '/home/sally/svn-work/sandwi ch.txt' is out of date

33

Basic Usage

(The exact wording of this error message depends on the network protocol and server you're using, but the idea is the same in all
cases.)

At this point, you need to run svn updat e, deal with any merges or conflicts that result, and attempt your commit again.
That covers the basic work cycle for using Subversion. Subversion offers many other features that you can use to manage your re-

pository and working copy, but most of your day-to-day use of Subversion will involve only the commands that we've discussed so
far in this chapter. We will, however, cover afew more commands that you'll use fairly often.

Examining History

Y our Subversion repository islike atime machine. It keeps arecord of every change ever committed and allows you to explore this
history by examining previous versions of files and directories as well as the metadata that accompanies them. With a single Sub-
version command, you can check out the repository (or restore an existing working copy) exactly as it was at any date or revision
number in the past. However, sometimes you just want to peer into the past instead of going into it.
Several commands can provide you with historical data from the repository:
svn diff
Shows line-level details of a particular change
svn log
Shows you broad information: 1og messages with date and author information attached to revisions and which paths changed
in each revision

svn cat
Retrieves afile asit existed in aparticular revision number and displaysit on your screen

svn list
Displaysthefilesin adirectory for any given revision

Examining the Details of Historical Changes

Weve aready seen svn diff before—it displays file differences in unified diff format; we used it to show the local modifications
made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:

» Examining local changes
» Comparing your working copy to the repository

» Comparing repository revisions

Examining local changes

Aswe've seen, invoking svn di f f with no options will compare your working files to the cached “ pristine” copiesinthe. svn
area

Basic Usage

$ svn diff
| ndex: rul es. txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking

Comparing working copy to repository

If asingle- - r evi si on (- r) number is passed, your working copy is compared to the specified revision in the repository:

$ svn diff -r 3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es. txt (working copy)
@a@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything i n noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking

Comparing repository revisions

If two revision numbers, separated by acolon, are passed via- - r evi si on (- r), the two revisions are directly compared:

$ svn diff -r 2:3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
Chew wi t h your nouth open

A more convenient way of comparing one revision to the previous revision isto usethe - - change (- ¢) option:

35

Basic Usage

$ svn diff -c 3 rules.txt
| ndex: rul es. txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
$Chevvwith your mouth open

Lastly, you can compare repository revisions even when you don't have a working copy on your local machine, just by including
the appropriate URL on the command line:

$ svn diff -c 5 http://svn.exanpl e. conl repos/exanpl e/trunk/text/rul es.txt

$

Generating a List of Historical Changes

To find information about the history of afile or directory, use the svn log command. svn log will provide you with a record of
who made changes to a file or directory, a what revision it changed, the time and date of that revision, and—if it was
provided—the log message that accompanied the commit;

$ svn |l og

r3 | sally | 2008-05-15 23:09:28 -0500 (Thu, 15 May 2008) | 1 line

Added include |lines and corrected # of cheese slices.

r2 | harry | 2008-05-14 18:43:15 -0500 (Wed, 14 May 2008) | 1 line
Added nai n() nethods.

rl | sally | 2008-05-10 19:50:31 -0500 (Sat, 10 May 2008) | 1 line

Initial inport

Note that the log messages are printed in reverse chronological order by default. If you wish to see a different range of revisionsin
aparticular order or just asingle revision, passthe- - r evi si on (- r) option:

Table2.1. Common log requests

Command Description
svn log -r 5:19 Display logs for revisions 5 through 19 in chronological order

36

Basic Usage

Command Description

svn log -r 19:5 Display logs for revisions 5 through 19 in reverse chronological
order

svnh log -r 8 Display logsfor revision 8 only

Y ou can also examine the log history of asinglefile or directory. For example:

$ svn log foo.c

$ svn log http://foo.com svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

Why Does svn log Not Show Me What | Just Committed?

If you make a commit and immediately type svn | og with no arguments, you may notice that your most recent commit
doesn't show up in thelist of log messages. Thisis due to a combination of the behavior of svn commit and the default beha-
vior of svn log. First, when you commit changes to the repository, svn bumps only the revision of files (and directories) that
it commits, so usually the parent directory remains at the older revision (See the section called “Updates and commits are
separate” for an explanation of why). svn log then defaults to fetching the history of the directory at its current revision, and
thus you don't see the newly committed changes. The solution here is to either update your working copy or explicitly
provide arevision number to svn log by using the - - r evi si on (- r) option.

If you want even more information about afile or directory, svn log also takesa- - ver bose (- v) option. Because Subversion al-
lows you to move and copy files and directories, it is important to be able to track path changes in the filesystem. So, in verbose
mode, svn log will include alist of changed pathsin arevision in its output:

$ svnlog -r 8 -v

r8 | sally | 2008-05-21 13:19:25 -0500 (Wed, 21 May 2008) | 1 line
Changed pat hs:

M /trunk/ code/ foo.c

M /trunk/ code/ bar. h

A /trunk/ code/ doc/ READVE

Frozzl ed the sub-space wi nch.

svn log also takes a - - qui et (- q) option, which suppresses the body of the log message. When combined with - - ver bose
(- v), it givesjust the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

37

Basic Usage

$ svn log -r 2

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log operates on a path in the
repository. If you supply no path, Subversion uses the current working directory as the default target. As aresult, if you're
operating in a subdirectory of your working copy and attempt to see the log of arevision in which neither that directory nor
any of its children was changed, Subversion will show you an empty log. If you want to see what changed in that revision,
try pointing svn log directly at the topmost URL of your repository, asinsvn log -r 2 ~/.

As of Subversion 1.7, users of the Subversion command-line can aso take advantage of a specia output mode for svn log which
integrates a difference report such as is generated by the svn diff command we introduced earlier. When you invoke svn log with
the - - di f f option, Subversion will append to each revision log chunk in the log report a diff-style difference report. Thisis a
very convenient way to see both the high-level, semantic changes and the line-based modifications of a revision al at the same
time!

Browsing the Repository

Using svn cat and svn list, you can view various revisions of files and directories without changing the working revision of your
working copy. In fact, you don't even need aworking copy to use either one.

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files, you can use svn cat:

$ svn cat -r 2 rules.txt

Be kind to others

Freedom = Chocol ate I ce Cream
Everything in noderation

$?hew wi th your nouth open

You can aso redirect the output directly into afile:

$ svn cat -r 2 rules.txt > rules.txt.v2

svn list

The svn list command shows you what files are in a repository directory without actually downloading the files to your local ma-
chine:

$ svn list http://svn.exanpl e.contrepo/ project

38

Basic Usage

READIVE

br anches/
t ags/

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this:

$ svn list -v http://svn.exanpl e. contf repo/ proj ect

23351 sally Feb 05 13:26 ./

20620 harry 1084 Jul 13 2006 README
23339 harry Feb 04 01:40 branches/
23198 harry Jan 23 17:17 tags/
23351 sally Feb 05 13:26 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified it, the size if it is afile,
the date it was last modified, and the item's name.

Thesvn |i st command with ho arguments defaults to the repository URL of the current working directory, not the
local working copy directory. After all, if you want alisting of your local directory, you could use just plain Is (or any
reasonable non-Unixy equivalent).

Fetching Older Repository Snapshots

In addition to all of the previous commands, you can usethe - - r evi si on (- r) option with svn update to take an entire working
copy “back in time”:3

Make the current directory look like it did in ri1729.
$ svn update -r 1729
Updating '.":

$

Many Subversion newcomers attempt to use the preceding svn update example to “undo” committed changes, but

_} this won't work as you can't commit changes that you obtain from backdating a working copy if the changed files
have newer revisions. See the section called “Resurrecting Deleted Items” for a description of how to “undo” a com-
mit.

If you'd prefer to create a whole new working copy from an older snapshot, you can do so by modifying the typical svn checkout
command. Aswith svn update, you can provide the- - r evi si on (- r) option. But for reasons that we cover in the section called
“Peg and Operative Revisions’, you might instead want to specify the target revision as part of Subversion's expanded URL syn-
tax.

3See? We told you that Subversion was a time machine.

39

Basic Usage

Checkout the trunk fromr1729.
$ svn checkout http://svn.exanple.conm svn/repo/trunk@729 trunk-1729

Checkout the current trunk as it |ooked in ri1729.
$ svn checkout http://svn.exanple.com svn/repo/trunk -r 1729 trunk-1729

Lastly, if you're building a release and wish to bundle up your files from Subversion but don't want those pesky . svn directories
in the way, you can use svn export to create alocal copy of all or part of your repository sans. svn directories. The basic syntax
of this subcommand isidentical to that of svn checkout:

Export the trunk fromthe | atest revision.
svn export http://svn.exanpl e.conisvn/repo/trunk trunk-export

Export the trunk fromr1729.
svn export http://svn. exanpl e. com svn/repo/trunk@729 trunk-1729

Export the current trunk as it |ooked in r1729.
svn export http://svn.exanpl e.com svn/repo/trunk -r 1729 trunk-1729

©: UFH:; 6941:5 ©

Sometimes You Just Need to Clean Up

Now that we've covered the day-to-day tasks that you'll frequently use Subversion for, we'll review afew administrative tasks relat-
ing to your working copy.

Disposing of a Working Copy

Subversion doesn't track either the state or the existence of working copies on the server, so there's no server overhead to keeping
working copies around. Likewise, there's no need to let the server know that you're going to delete aworking copy.

If you're likely to use aworking copy again, there's nothing wrong with just leaving it on disk until you're ready to use it again, at
which point all it takesis an svn updateto bring it up to date and ready for use.

However, if you're definitely not going to use aworking copy again, you can safely delete the entire thing using whatever directory
removal capabilities your operating system offers. We recommend that before you do so you run svn st at us and review any
fileslisted in its output that are prefixed with a? to make certain that they're not of importance.

Recovering from an Interruption

When Subversion modifies your working copy—either your files or its own administrative state—it tries to do so as safely as pos-
sible. Before changing the working copy, Subversion logs its intentions in a private “to-do list”, of sorts. Next, it performs those
actions to effect the desired change, holding a lock on the relevant part of the working copy while it works. This prevents other
Subversion clients from accessing the working copy mid-change. Finally, Subversion releasesits lock and cleans up its private to-
do list. Architecturally, thisis similar to ajournaled filesystem. If a Subversion operation is interrupted (e.g, if the processis killed
or if the machine crashes), the private to-do list remains on disk. This alows Subversion to return to that list later to complete any
unfinished operations and return your working copy to a consistent state.

Thisis exactly what svn cleanup does: it searches your working copy and runs any leftover to-do items, removing working copy

40

Basic Usage

locks as it completes those operations. If Subversion ever tells you that some part of your working copy is “locked,” run svn
cleanup to remedy the problem. The svn status command will inform you about administrative locks in the working copy, too, by
displaying an L next to those locked paths:

$ svn status
L sonedir
M sonedi r/ f 0o. ¢
$ svn cl eanup
$ svn status
M sonedi r/ f oo. ¢

Don't confuse these working copy administrative locks with the user-managed locks that Subversion users create when using the
lock-modify-unlock model of concurrent version control; see the sidebar The Three Meanings of “Lock” for clarification.

Dealing with Structural Conflicts

So far, we have only talked about conflicts at the level of file content. When you and your collaborators make overlapping changes
within the same file, Subversion forces you to merge those changes before you can commit.*

But what happens if your collaborators move or delete a file that you are still working on? Maybe there was a miscommunication,
and one person thinks the file should be deleted, while another person still wants to commit changes to the file. Or maybe your col-
laborators did some refactoring, renaming files and moving around directories in the process. If you were still working on these
files, those modifications may need to be applied to the files at their new location. Such conflicts manifest themselves at the direct-
ory tree structure level rather than at the file content level, and are known as tree conflicts.

Tree conflicts prior to Subversion 1.6

Prior to Subversion 1.6, tree conflicts could yield rather unexpected results. For example, if a file was locally modified, but
had been renamed in the repository, running svn update would make Subversion carry out the following steps:

» Check thefile to be renamed for local modifications.

» Deletethefile at its old location, and if it had local modifications, keep an on-disk copy of thefile at the old location. This
on-disk copy now appears as an unversioned file in the working copy.

» Addthefile, asit existsin the repository, at its new location.
When this situation arises, there is the possibility that the user makes a commit without realizing that local modifications
have been left in a now-unversioned file in the working copy, and have not reached the repository. This gets more and more

likely (and tedious) if the number of files affected by this problemislarge.

Since Subversion 1.6, this and other similar situations are flagged as conflicts in the working copy.

Aswith textual conflicts, tree conflicts prevent acommit from being made from the conflicted state, giving the user the opportunity
to examine the state of the working copy for potential problems arising from the tree conflict, and resolving any such problems be-
fore committing.

An Example Tree Conflict

“well, you could mark files containing conflict markers as resolved and commit them, if you really wanted to. But thisis rarely donein practice.

41

Basic Usage

Suppose a software project you were working on currently looked like this:

$ svn list -Rv svn://svn. exanpl e. cont trunk/
6

13 harry Sep 06 10:34 ./

13 harry 27 Sep 06 10: 34 COPYI NG
13 harry 41 Sep 06 10: 32 Makefile
13 harry 53 Sep 06 10: 34 README

13 harry Sep 06 10: 32 code/

13 harry 54 Sep 06 10:32 code/bar.c
13 harry 130 Sep 06 10: 32 code/foo.c

Later, in revision 14, your collaborator Harry renames the file bar . ¢ to baz. c¢. Unfortunately, you don't realize this yet. Asit
turns out, you are busy in your working copy composing a different set of changes, some of which aso involve modifications to
bar. c:

$ svn diff
| ndex: code/foo.c

--- code/foo.c (revision 13)
+++ code/ foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

printf("l don't |ike being noved around!\n%", bar());
- return O;
+ return 1,

| ndex: code/bar.c

--- code/bar.c (revision 13)
+++ code/ bar.c (working copy)
@-1,4 +1,4 @@

const char *bar(void)

- return "Me neither!\n";
+ return "Well, | do like being noved around!\n";

You first realize that someone else has changed bar . ¢ when your own commit attempt fails:

$ svn conmit -m"Small fixes"

Sendi ng code/ bar. c

svn: E155011: Commit failed (details follow):

svn: E155011: File '/hone/svn/project/code/bar.c' is out of date
;vn: E160013: File not found: transaction '14-e', path '/code/bar.c'

At this point, you need to run svn update. Besides bringing our working copy up to date so that you can see Harry's changes, this
also flags atree conflict so you have the opportunity to evaluate and properly resolve it.

42

Basic Usage

$ svn update

Updating '."':
C code/ bar.c
A code/ baz. c

U Makefil e

Updated to revision 14,

Summary of conflicts:
Tree conflicts: 1

$

In its output, svn update signifies tree conflicts using a capital C in the fourth output column. svn status reveals additional details
of the conflict:

$ svn status

M code/ foo. ¢
A + C code/bar.c
> | ocal edit, incom ng del ete upon update

Summary of conflicts:
Tree conflicts: 1

Note how bar . ¢ is automatically scheduled for re-addition in your working copy, which simplifies things in case you want to
keep thefile.

Because amove in Subversion isimplemented as a copy operation followed by a delete operation, and these two operations cannot
be easily related to one another during an update, all Subversion can warn you about is an incoming delete operation on a locally
modified file. This delete operation may be part of a move, or it could be a genuine delete operation. Determining exactly what se-
mantic change was made to the repository is important—you want to know just how your own edits fit into the overall tragjectory of
the project. So read log messages, talk to your collaborators, study the line-based differences—do whatever you must do—to de-
termine your best course of action.

In this case, Harry's commit log message tells you what you need to know.

$ svn log -rl1l4 ™ trunk

ri4 | harry | 2011-09-06 10:38:17 -0400 (Tue, 06 Sep 2011) | 1 line
Changed pat hs:

M / Makefile

D /code/ bar.c

A /code/ baz.c (from/code/bar.c: 13)

Renane bar.c to baz.c, and adjust Makefile accordingly.

svn info shows the URLSs of the items involved in the conflict. The left URL shows the source of the loca side of the conflict,
while the right URL shows the source of the incoming side of the conflict. These URLSs indicate where you should start searching
the repository's history for the change which conflicts with your local change.

43

Basic Usage

$ svn info code/bar.c | tail -n 4

Tree conflict: local edit, incomng del ete upon update
Source left: (file) ~/trunk/code/bar.c@
Source right: (none) ~/trunk/code/bar.c@®

bar . ¢ isnow said to be the victim of atree conflict. It cannot be committed until the conflict is resolved:

$ svn conmmit -m"Small fixes"

svn: E155015: Commit failed (details follow):

svn: E155015: Aborting conmt: '/hone/svn/project/code/bar.c' remains in confl
i ct

$

To resolve this conflict, you must either agree or disagree with the move that Harry made.

If you agree with the move, your bar . ¢ is superfluous. You'll want to delete it and mark the tree conflict as resolved. But wait:
you made changes to that file! Before deleting bar . ¢, you need to decide if the changes you made to it need to be applied else-
where, for example to the new baz. c file where all of bar. c's code now lives. Let's assume that your changes do need to
“follow the move’. Subversion isn't smart enough to do thiswork for you5, S0 you need to migrate your changes manually.

In our example, you could manually re-make your changeto bar . ¢ pretty easily—it was, after all, asingle-line change. That's not
always the case, though, so we'll show a more scalable approach. Welll first use svn diff to create a patch file. Then we'll edit the
headers of that patch file to point to the new name of our renamed file. Finally, we re-apply the modified patch to our working

copy.

$ svn diff code/ bar.c > PATCHFI LE
$ cat PATCHFI LE
| ndex: code/bar.c

--- code/bar.c (working copy)
+++ code/ bar.c (working copy)
@_ 1! 4 +1! 4 @

const char *bar (void)

- return "Me neither!\n";
+ return "Well, | do |like being noved around!\n";

}
$ ### Edit PATCHFILE to refer to code/baz.c instead of code/bar.c
$ cat PATCHFI LE
| ndex: code/ baz.c

--- code/baz.c (working copy)
+++ code/ baz.c (working copy)
@_ 1! 4 +1! 4 @

const char *bar (void)

- return "Me neither!\n";
+ return "Well, | do |like being noved around!\n";

}

5In some cases, Subversion 1.5 and 1.6 would actually handle thisfor you, but this somewhat hit-or-miss functionality was removed in Subversion 1.7.

a4

Basic Usage

$ svn patch PATCHFI LE
] code/ baz. c
$

Now that the changes you originally made to bar . ¢ have been successfully reproduced in baz. c, you can delete bar . ¢ and re-
solve the conflict, instructing the resolution logic to accept what is currently in the working copy as the desired result.

$ svn delete --force code/bar.c

D code/ bar. c

$ svn resol ve --accept=worki ng code/bar.c
Resol ved conflicted state of 'code/bar.c
$ svn status

M code/ f 0o. c
M code/ baz. c
$ svn diff

| ndex: code/foo.c

--- code/foo.c (revision 14)
+++ code/foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1,

}
| ndex: code/baz.c

--- code/baz.c (revision 14)
+++ code/ baz.c (working copy)
@ - 1! 4 +1! 4 @

const char *bar(voi d)

- return "Me neither!\n";
+ return "Well, | do like being nmoved around!\n";

But what if you do not agree with the move? Well, in that case, you can delete baz. ¢ instead, after making sure any changes
made to it after it was renamed are either preserved or not worth keeping. (Do not forget to also revert the changes Harry made to
Makefi | e.) Since bar . c isaready scheduled for re-addition, there is nothing else left to do, and the conflict can be marked re-
solved:

$ svn delete --force code/ baz.c

D code/ baz. c

$ svn resolve --accept=working code/bar.c
Resol ved conflicted state of 'code/bar.c
$ svn status

M code/ f 0o. c
A + code/ bar.c
D code/ baz. c
M Makefil e

$ svn diff

I ndex: code/foo.c

45

Basic Usage

.-~ code/foo.c (revision 14)
+++ code/ foo.c (working copy)
@ - 3! 5 +3! 5 @

int main(int argc, char *argv[])

printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1;

}
I ndex: code/bar.c

--- code/bar.c (revision 14)
+++ code/ bar.c (working copy)
@a@-1,4 +1,4 @@

const char *bar(voi d)

- return "Me neither!\n";
+ return "Well, | do like being moved around!\n";

}
| ndex: code/baz.c

--- code/baz.c (revision 14)
+++ code/ baz.c (working copy)
@_ 1! 4 +0! 0 @

-const char *bar(void)

- return "Me neither!\n";

-}
| ndex: Makefil e

--- Makefile (revision 14)

+++ Makefile (working copy)

@-1,2 +1,2 @@

foo:

- $(CO -0 $@code/foo.c codel/baz.c
+ $(CCO -0 $@code/foo.c codel/bar.c

Y ou've now resolved your first tree conflict! Y ou can commit your changes and tell Harry during tea break about all the extra work
he caused for you.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching and merging
(see Chapter 4, Branching and Merging) and properties (see the section called “ Properties”). However, you may want to take a mo-
ment to skim through Chapter 9, Subversion Complete Reference to get an idea of all the different commands that Subversion
has—and how you can use them to make your work easier.

46

Chapter 3. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough knowledge to
use the Subversion client to perform the most common version control operations. Y ou understand how to check out a working
copy from a Subversion repository. Y ou are comfortable with submitting and receiving changes using the svn commit and svn up-
date operations. You've probably even developed a reflex that causes you to run the svn status command almost unconsciously.
For all intents and purposes, you are ready to use Subversion in atypical environment.

But the Subversion feature set doesn't stop at “common version control operations.” It has other bits of functionality besides just
communicating file and directory changesto and from a central repository.

This chapter highlights some of Subversion's features that, while important, may not be part of the typical user'sdaily routine. It as-
sumes that you are familiar with Subversion's basic file and directory versioning capabilities. If you aren't, you'll want to first read
Chapter 1, Fundamental Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed this chapter,
you'll be a Subversion power user!

Revision Specifiers

As we described in the section called “Revisions’, revision numbers in Subversion are pretty straightforward—integers that keep
getting larger as you commit more changes to your versioned data. Still, it doesn't take long before you can no longer remember
exactly what happened in each and every revision. Fortunately, the typical Subversion workflow doesn't often demand that you
supply arbitrary revisions to the Subversion operations you perform. For operations that do require a revision specifier, you gener-
ally supply arevision number that you saw in a commit email, in the output of some other Subversion operation, or in some other
context that would give meaning to that particular number.

Referring to revision numbers with an “r ” prefix (r 314, for example) is an established practice in Subversion com-
/ munities, and is both supported and encouraged by many Subversion-related tools. In most places where you would
specify abare revision number on the command line, you may also use the r NNN syntax.

But occasionally, you need to pinpoint a moment in time for which you don't already have a revision number memorized or handy.
So besides the integer revision numbers, svn allows as input some additional forms of revision specifiers. revision keywords and
revision dates.

The various forms of Subversion revision specifiers can be mixed and matched when used to specify revision ranges.

/ For example, you can use -r REV1: REV2 where REV1 is arevision keyword and REV2 is a revision number, or
where REV1 is a date and REV2 is a revision keyword, and so on. The individual revision specifiers are independ-
ently evaluated, so you can put whatever you want on the opposite sides of that colon.

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead of integer arguments to the
--revi sion (- r) option, and are resolved into specific revision numbers by Subversion:
HEAD
The latest (or “youngest”) revision in the repository.
BASE

The revision number of an item in a working copy. If the item has been locally modified, this refers to the way the item ap-
pears without those local modifications.

47

Advanced Topics

COW TTED

The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV

The revision immediately before the last revision in which an item changed. Technically, this boils down to COYW TTED-1.

As can be derived from their descriptions, the PREV, BASE, and COVM TTED revision keywords are used only when referring to a
working copy path—they don't apply to repository URLS. HEAD, on the other hand, can be used in conjunction with both of these
path types.

Here are some examples of revision keywords in action:

HHH HHE HHEHL HHOE HHEHL AL

svn diff -r PREV: COW TTED f 0o0. ¢
shows the last change committed to foo.c

svn log -r HEAD
shows | og nmessage for the |latest repository conmt

svn diff -r HEAD
conpares your working copy (with all of its |ocal changes) to the
| atest version of that tree in the repository

svn diff -r BASE: HEAD f 0o0. c
conpares the unnodified version of foo.c with the |latest version of
foo.c in the repository

svn | og -r BASE: HEAD
shows all commit logs for the current versioned directory since you
| ast updated

svn update -r PREV foo.c
rewi nds the | ast change on foo.c, decreasing foo.c's working revision

svn diff -r BASE: 14 foo.c
conpares the unnodified version of foo.c with the way foo.c | ooked
in revision 14

Revision Dates

Revision numbers reveal nothing about the world outside the version control system, but sometimes you need to correlate a mo-
ment in real time with a moment in version history. To facilitate this, the - - r evi si on (- r) option can also accept as input date
specifiers wrapped in curly braces ({ and }). Subversion accepts the standard 1SO-8601 date and time formats, plus a few others.
Here are some examples.

AAPAPAPAAPAP

svn checkout -r {2006-02-17}

svn checkout -r {15: 30}

svn checkout -r {15:30:00.200000}

svn checkout -r {"2006-02-17 15:30"}

svn checkout -r {"2006-02-17 15:30 +0230"}
svn checkout -r {2006-02-17T15: 30}

svn checkout -r {2006-02-17T15: 307}

svn checkout -r {2006-02-17T15: 30- 04: 00}

48

Advanced Topics

$ svn checkout -r {20060217T1530}
$ svn checkout -r {20060217T1530Z}
$ svn checkout -r {20060217T1530- 0500}

cluded as part of revision date specifiers. Certain shells may also take issue with the unescaped use of curly braces,

<> Keep in mind that most shells will require you to, at a minimum, quote or otherwise escape any spaces that are in-
/ too. Consult your shell's documentation for the requirements specific to your environment.

When you specify a date, Subversion resolves that date to the most recent revision of the repository as of that date, and then contin-
ues to operate against that resolved revision number:

$ svn log -r {2006-11-28}

ri2 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 2006- 11- 27), you may think that
Subversion should give you the last revision that took place on the 27th of November. Instead, you'll get back a revision
from the 26th, or even earlier. Remember that Subversion will find the most recent revision of the repository as of the date
you give. If you give a date without a timestamp, such as2006- 11- 27, Subversion assumes a time of 00:00:00, so looking
for the most recent revision won't return anything on the 27th.

If you want to include the 27th in your search, you can either specify the 27th with thetime ({ " 2006- 11- 27 23: 59"}),
or just specify the next day ({ 2006- 11- 28}).

You can aso use arange of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log -r {2006-11-20}:{2006- 11- 29}

Since the timestamp of a revision is stored as an unversioned, modifiable property of the revision (see the section
called “Properties’), revision timestamps can be changed to represent complete falsifications of true chronology, or
even removed altogether. Subversion's ability to correctly convert revision dates into real revision numbers depends
on revision datestamps maintaining a sequential ordering—the younger the revision, the younger its timestamp. If this
ordering isn't maintained, you will likely find that trying to use dates to specify revision ranges in your repository
doesn't always return the data you might have expected.

Peg and Operative Revisions

We copy, move, rename, and completely replace files and directories on our computers all the time. And your version control sys-

49

Advanced Topics

tem shouldn't get in the way of your doing these things with your version-controlled files and directories, either. Subversion's file
management support is quite liberating, affording almost as much flexibility for versioned files as you'd expect when manipulating
your unversioned ones. But that flexibility means that across the lifetime of your repository, a given versioned object might have
many paths, and a given path might represent several entirely different versioned objects. This introduces a certain level of com-
plexity to your interactions with those paths and objects.

Subversion is pretty smart about noticing when an object's version history includes such “changes of address.” For example, if you
ask for the revision history log of a particular file that was renamed last week, Subversion happily provides al those logs—the re-
vision in which the rename itself happened, plus the logs of relevant revisions both before and after that rename. So, most of the
time, you don't even have to think about such things. But occasionally, Subversion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or fileis deleted from version control, and then a new directory or fileis cre-
ated with the same name and added to version control. The thing you deleted and the thing you later added aren't the same thing.
They merely happen to have had the same path—/ t r unk/ obj ect , for example. What, then, does it mean to ask Subversion
about the history of / t r unk/ obj ect ? Are you asking about the thing currently at that location, or the old thing you deleted from
that location? Are you asking about the operations that have happened to all the objects that have ever lived at that path? Subver-
sion needs a hint about what you really want.

And thanks to moves, versioned object history can get far more twisted than even that. For example, you might have a directory
named concept , containing some nascent software project you've been toying with. Eventually, though, that project matures to
the point that the idea seems to actually have some wings, so you do the unthinkable and decide to give the project a name.! Let's
say you called your software Frabnaggilywort. At this point, it makes sense to rename the directory to reflect the project's new
name, so concept isrenamed to f r abnaggi | ywor t . Life goes on, Frabnaggilywort releases a 1.0 version and is downloaded
and used daily by hordes of people aiming to improve their lives.

It'sanice story, really, but it doesn't end there. Entrepreneur that you are, you've already got another think in the tank. So you make
anew directory, concept , and the cycle begins again. In fact, the cycle begins again many times over the years, each time start-
ing with that old concept directory, then sometimes seeing that directory renamed as the idea cures, sometimes seeing it del eted
when you scrap the idea. Or, to get really sick, maybe you rename concept to something else for a while, but later rename the
thing back to concept for some reason.

In scenarios like these, attempting to instruct Subversion to work with these reused paths can be alittle like instructing a motorist
in Chicago's West Suburbs to drive east down Roosevelt Road and turn left onto Main Street. In a mere 20 minutes, you can cross
“Main Street” in Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and our Subver-
sion—need alittle more detail to do the right thing.

Fortunately, Subversion allows you to tell it exactly which Main Street you meant. The mechanism used is called a peg revision,
and you provide these to Subversion for the sole purpose of identifying unique lines of history. Because at most one versioned ob-
ject may occupy a path at any given time—or, more precisely, in any one revision—the combination of a path and a peg revision is
all that is needed to unambiguously identify a specific line of history. Peg revisions are specified to the Subversion command-line
client using at syntax, so called because the syntax involves appending an “at sign” (@ and the peg revision to the end of the path
with which the revision is associated.

But what of the - - r evi si on (- r) of which we've spoken so much in this book? That revision (or set of revisions) is called the
operative revision (or operative revision range). Once a particular line of history has been identified using a path and peg revision,
Subversion performs the requested operation usi ng the operative revision(s). To map this to our Chicagoland streets analogy, if we
are told to go to 606 N. Main Street in Wheaton,” we can think of “Main Street” as our path and “Wheaton” as our peg revision.
These two pieces of information identify a unique path that can be traveled (north or south on Main Street), and they keep us from
traveling up and down the wrong Main Street in search of our destination. Now we throw in “606 N.” as our operative revision of
sorts, and we know exactly where to go.

The Peg Revision Algorithm

The Subversion command-line client performs the peg revision algorithm any time it needs to resolve possible ambiguitiesin

ey ou're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski
2606 N. Main Street, Wheaton, Ilinois, is the home of the Wheaton History Center. It seemed appropriate....

50

Advanced Topics

the paths and revisions provided to it. Here's an example of such an invocation:

$ svn conmand -r OPERATI VE- REV it em@EG REV

If OPERATI VE- REV isolder than PEG REV, the algorithm is as follows:

1. Locatei t emin the revision identified by PEG- REV. There can be only one such object.
2. Trace the object's history backwards (through any possible renames) to its ancestor in the revision OPERATI VE- REV.

3. Perform the requested action on that ancestor, wherever it islocated, or whatever its name might be or might have been at
that time.

But what if OPERATI VE- REV is younger than PEG REV? Well, that adds some complexity to the theoretical problem of
locating the path in OPERATI VE- REV, because the path's history could have forked multiple times (thanks to copy opera-
tions) between PEG- REV and OPERATI VE- REV. And that's not all—Subversion doesn't store enough information to per-
formantly trace an object's history forward, anyway. So the algorithm is alittle different:

1. Locatei t emin therevision identified by OPERATI VE- REV. There can be only one such object.
2. Tracethe object's history backward (through any possible renames) to its ancestor in the revision PEG- REV.

3. Verify that the object's location (path-wise) in PEG- REV is the same as it is in OPERATI VE- REV. If that's the case, at
least the two locations are known to be directly related, so perform the requested action on the location in OPERATI VE-
REV. Otherwise, relatedness was not established, so error out with a loud complaint that no viable location was found.
(Someday, we expect that Subversion will be able to handle this usage scenario with more flexibility and grace.)

Note that even when you don't explicitly supply a peg revision or operative revision, they are still present. For your conveni-
ence, the default peg revision is BASE for working copy items and HEAD for repository URLs. And when no operative revi-
sionis provided, it defaults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 we added our first concept directory, plusan | DEA filein that dir-
ectory talking about the concept. After several revisions in which real code was added and tweaked, we, in revision 20, renamed
this directory to f r abnaggi | ywor t . By revision 27, we had a new concept, a new concept directory to hold it, and a new
| DEA fileto describeit. And then five years and thousands of revisions flew by, just like they would in any good romance story.

Now, years later, we wonder what the | DEA file looked like back in revision 1. But Subversion needs to know whether we are ask-
ing about how the current file looked back in revision 1, or whether we are asking for the contents of whatever file lived at con-
cept s/ | DEA in revision 1. Certainly those questions have different answers, and because of peg revisions, you can ask those
guestions. To find out how the current | DEA file looked in that old revision, you run:

$ svn cat -r 1 concept/I|DEA
svn: E195012: Unable to find repository location for 'concept/IDEA in revision 1

Of courseg, in this example, the current | DEA file didn't exist yet in revision 1, so Subversion gives an error. The previous com-
mand is shorthand for alonger notation which explicitly lists a peg revision. The expanded notation is:

51

Advanced Topics

$ svn cat -r 1 concept/| DEA@ASE
svn: E195012: Unable to find repository |location for 'concept/IDEA in revision 1

And when executed, it has the expected results.

The perceptive reader is probably wondering at this point whether the peg revision syntax causes problems for working copy paths
or URLsthat actually have at signsin them. After all, how does svh know whether news @1 is the name of adirectory in my tree
or just asyntax for “revision 11 of news”? Thankfully, while svn will always assume the latter, thereis atrivial workaround. Y ou
need only append an at sign to the end of the path, such as news @ 1@ svn cares only about the last at sign in the argument, and it
isnot considered illegal to omit a literal peg revision specifier after that at sign. This workaround even applies to paths that end in
an at sign—you would usef i | enane@@to talk about afilenamedfi | enane@

Let's ask the other question, then—in revision 1, what were the contents of whatever file occupied the address concept s/ | DEA
at the time? We'll use an explicit peg revision to help us out.

$ svn cat concept/| DEA@

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enpl oy over-the-top input validation and data verification
nmechani sns.

Notice that we didn't provide an operative revision this time. That's because when no operative revision is specified, Subversion as-
sumes a default operative revision that's the same as the peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions frabbing naggily worts, so thisis al-
most certainly the file that describes the software now called Frabnaggilywort. In fact, we can verify this using the combination of
an explicit peg revision and explicit operative revision. We know that in HEAD, the Frabnaggilywort project is located in the
frabnaggi | ywort directory. So we specify that we want to see how the line of history identified in HEAD as the path f r abn-

aggi | ywor t/ | DEA looked in revision 1.

$ svn cat -r 1 frabnaggil ywort/| DEAGHEAD

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ram fications, so
we need to enploy over-the-top input validation and data verification
nmechani sns.

And the peg and operative revisions need not be so trivial, either. For example, say f r abnaggi | ywort had been deleted from
HEAD, but we know it existed in revision 20, and we want to see the diffs for its | DEA file between revisions 4 and 10. We can use
peg revision 20 in conjunction with the URL that would have held Frabnaggilywort's | DEA file in revision 20, and then use 4 and
10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean. coni projects/frabnaggi | ywort/| DEA@QO
I ndex: frabnaggil ywort/| DEA

--- frabnaggi |l ywort/ | DEA (revision 4)

52

Advanced Topics

+++ frabnaggil ywort/ |1 DEA (revision 10)

@-1,5 +1,5 @@

-The idea behind this project is to cone up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky

-busi ness, and doing it incorrectly can have serious ramfications, so
-we need to enploy over-the-top input validation and data verification
- mechani sis.

+The i dea behind this project is to cone up with a piece of
+client-server software that can renotely frab a naggily wort.
+Frabbi ng naggily worts is tricky business, and doing it incorrectly
+can have serious ranifications, so we need to enploy over-the-top

+i nput validation and data verification nmechanisns.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg revisions are that extra
hint Subversion needs to clear up ambiguity.

Properties

We've already covered in detail how Subversion stores and retrieves various versions of files and directories in its repository.
Whole chapters have been devoted to this most fundamental piece of functionality provided by the tool. And if the versioning sup-
port stopped there, Subversion would still be complete from a version control perspective.

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and removing versioned
metadata on each of your versioned directories and files. We refer to this metadata as properties, and they can be thought of as
two-column tables that map property names to arbitrary values attached to each item in your working copy. Generally speaking, the
names and values of the properties can be whatever you want them to be, with the constraint that the names must contain only AS-
Cll characters. And the best part about these properties is that they, too, are versioned, just like the textual contents of your files.
Y ou can modify, commit, and revert property changes as easily as you can file content changes. And the sending and receiving of
property changes occurs as part of your typical commit and update operations—you don't have to change your basic processes to
accommodate them.

ful of such propertiesin use today, you should avoid creating custom properties for your own needs whose names be-
gin with this prefix. Otherwise, you run the risk that a future release of Subversion will grow support for a feature or
behavior driven by a property of the same name but with perhaps an entirely different interpretation.

<> Subversion has reserved the set of properties whose names begin with svn: asits own. While there are only a hand-

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names and values at-
tached to them, each revision as awhole may have arbitrary properties attached to it. The same constraints apply—human-readable
names and anything-you-want binary values. The main difference is that revision properties are not versioned. In other words, if
you change the value of, or delete, arevision property, there's no way, within the scope of Subversion's functionality, to recover the
previous value.

Subversion has no particular policy regarding the use of properties. It asks only that you do not use property nhames that begin with
the prefix svn: as that's the namespace that it sets aside for its own use. And Subversion does, in fact, use properties—both the
versioned and unversioned variety. Certain versioned properties have special meaning or effects when found on files and director-
ies, or they house a particular bit of information about the revisions on which they are found. Certain revision properties are auto-
matically attached to revisions by Subversion's commit process, and they carry information about the revision. Most of these prop-
erties are mentioned elsewhere in this or other chapters as part of the more general topics to which they are related. For an exhaust-
ive list of Subversion's predefined properties, see the section called “Subversion Properties’ in Chapter 9, Subversion Complete
Reference.

53

Advanced Topics

it does not presume thereafter the existence of those properties, and neither should you or the tools you use to interact
with your repository. Revision properties can be deleted programmatically or viathe client (if allowed by the reposit-
ory hooks) without damaging Subversion's ability to function. So, when writing scripts which operate on your Sub-
version repository data, do not make the mistake of assuming that any particular revision property exists on a revi-
sion.

<> While Subversion automatically attaches properties (svn: dat e, svn: aut hor, svn: | og, and so on) to revisions,

In this section, we will examine the utility—both to users of Subversion and to Subversion itself—of property support. You'll learn
about the property-related svn subcommands and how property modifications affect your normal Subversion workflow.

Why Properties?

Just as Subversion uses properties to store extra information about the files, directories, and revisions that it contains, you might
also find properties to be of similar use. You might find it useful to have a place close to your versioned data to hang custom
metadata about that data.

Say you wish to design a web site that houses many digital photos and displays them with captions and a datestamp. Now, your set
of photos is constantly changing, so you'd like to have as much of this site automated as possible. These photos can be quite large,
so asis common with sites of this nature, you want to provide smaller thumbnail images to your site visitors.

Now, you can get this functionality using traditional files. That is, you can have your i nragel23.jpg and an i m
agel23-t hunbnail . j pg side by side in a directory. Or if you want to keep the filenames the same, you might have your
thumbnails in a different directory, such ast hunbnai | s/ i magel23. j pg. You can also store your captions and datestampsin
asimilar fashion, again separated from the original image file. But the problem here is that your collection of files multiplies with
each new photo added to the site.

Now consider the same web site deployed in away that makes use of Subversion's file properties. Imagine having a single image
file, i magel23. j pg, with properties set on that file that are named capt i on, dat est anp, and even t hunbnai | . Now your
working copy directory looks much more manageable—in fact, it looks to the casual browser like there are nothing but image files
in it. But your automation scripts know better. They know that they can use svn (or better yet, they can use the Subversion lan-
guage bindings—see the section called “Using the APIS") to dig out the extra information that your site needs to display without
having to read an index file or play path manipulation games.

optimally carry large property values or large sets of properties on a given file or directory. Subversion commonly
holds all the property names and values associated with a single item in memory at the same time, which can cause
detrimental performance or failed operations when extremely large property sets are used.

<> While Subversion places few restrictions on the names and values you use for properties, it has not been designed to

Custom revision properties are also frequently used. One common such use is a property whose value contains an issue tracker ID
with which the revision is associated, perhaps because the change made in that revision fixes a bug filed in the tracker issue with
that 1D. Other uses include hanging more friendly names on the revision—it might be hard to remember that revision 1935 was a
fully tested revision. But if there's, say, at est - r esul t s property on that revision with the valueal | passi ng, that's mean-
ingful information to have. And Subversion allows you to easily do this viathe - - wi t h- r evpr op option of the svn commit
command:

$ svn commit -m"Fix up the last remaining known regression bug." \
--with-revprop "test-results=all passing"

Sendi ng lib/crit_bits.c

Transmitting file data .

gomn’ tted revision 912.

Advanced Topics

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to them—have a major shortcoming:
whileit is asimple matter to set a custom property, finding that property later is awhole different ball of wax.

Trying to locate a custom revision property generally involves performing alinear walk across all the revisions of the repos-
itory, asking of each revision, “Do you have the property I'm looking for?" Usethe--wi t h- al | - r evpr ops option with
the svn log command's XML output mode to facilitate this search. Notice the presence of the custom revision property
t estresul t s inthefollowing output:

$ svn log --with-all-revprops --xm lib/crit_bits.c
<?xm version="1.0"?>
<l og>
<l ogentry
revision="912">
<aut hor >harry</ aut hor >
<dat e>2011- 07-29T14: 47: 41. 1698947</ dat e>
<msg>Fi x up the last remaining known regression bug. </ nsg>
<revprops>
<property
nane="t estresul ts">al |l passi ng</property>
</ revprops>
</l ogentry>

=

Trying to find a custom versioned property is painful, too, and often involves a recursive svn propget across an entire work-
ing copy. In your situation, that might not be as bad as a linear walk across all revisions. But it certainly leaves much to be
desired in terms of both performance and likelihood of success, especialy if the scope of your search would require a work-
ing copy from the root of your repository.

For this reason, you might choose—especially in the revision property use case—to simply add your metadata to the revi-

sion's log message using some policy-driven (and perhaps programmatically enforced) formatting that is designed to be
quickly parsed from the output of svn log. It is quite common to see the following in Subversion log messages:

| ssue(s): 122376, 1271919
Revi ewed by: sally

This fixes a nasty segfault in the wort frabbing process

But here again lies some misfortune. Subversion doesn't yet provide a log message templating mechanism, which would go a
long way toward helping users be consistent with the formatting of their log-embedded revision metadata.

Manipulating Properties

The svn program affords a few ways to add or modify file and directory properties. For properties with short, human-readable val-
ues, perhaps the simplest way to add a new property is to specify the property name and value on the command line of the svn
propset subcommand:

55

Advanced Topics

$ svn propset copyright '(c) 2006 Red-Bean Software' cal c/button.c
property 'copyright' set on 'calc/button.c’
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are planning to have a multiline
textual, or even binary, property value, you probably do not want to supply that value on the command line. So the svn propset
subcommand takesa- - f i | e (- F) option for specifying the name of afile that contains the new property value.

$ svn propset license -F /path/to/LI CENSE cal c/button.c
property 'license' set on 'calc/button.c'
$

There are some restrictions on the names you can use for properties. A property name must start with aletter, acolon (:), or an un-
derscore (_); after that, you can also use digits, hyphens (-), and periods (.).3

In addition to the propset command, the svn program supplies the propedit command. This command uses the configured editor
program (see the section called “ Config”) to add or modify properties. When you run the command, svn invokes your editor pro-
gram on atemporary file that contains the current value of the property (or that is empty, if you are adding a new property). Then,
you just modify that value in your editor program until it represents the new value you wish to store for the property, save the tem-
porary file, and then exit the editor program. If Subversion detects that you've actually changed the existing value of the property, it
will accept that as the new property value. If you exit your editor without making any changes, no property modification will oc-
cur:

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on multiple paths at once. This enables
you to modify properties on whole sets of files with a single command. For example, we could have done the following:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'cal c/ Makefile'

property 'copyright' set on 'calc/button.c'

property 'copyright' set on 'calc/integer.c'

$

All of this property adding and editing isn't really very useful if you can't easily get the stored property value. So the svn program
supplies two subcommands for displaying the names and values of properties stored on files and directories. The svn proplist com-
mand will list the names of properties that exist on a path. Once you know the names of the properties on the node, you can request
their values individually using svn propget. This command will, given a property name and a path (or set of paths), print the value
of the property to the standard output stream.

81 you're familiar with XML, thisis pretty much the ASCI| subset of the syntax for XML “Name”.
56

Advanced Topics

$ svn proplist calc/button.c
Properties on 'calc/button.c’

copyri ght

license
$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and the value for al of the properties. Simply supply
the- - ver bose (- v) option.

$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redi stribution and use in source and binary forns, with or w thout
nodi fication, are pernmitted provided that the follow ng conditions
are net:

1. Redistributions of source code must retain the above copyri ght
notice, this list of conditions, and the recipe for Fitz's fanmous
red- beans-and-ri ce.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty values, you can't re-
move a property altogether using svn propedit or svn propset. For example, this command will not yield the desired effect:

$ svn propset license "" calc/button.c
property 'license' set on 'calc/button.c
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Y ou need to use the propdel subcommand to delete properties altogether. The syntax is similar to the other property commands:

$ svn propdel license calc/button.c
property 'license' deleted from'calc/button.c'.
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software

57

Advanced Topics

Remember those unversioned revision properties? You can modify those, too, using the same svn subcommands that we just de-
scribed. Simply add the - - r evpr op command-line parameter and specify the revision whose property you wish to modify. Since
revisions are global, you don't need to specify atarget path to these property-related commands so long as you are positioned in a
working copy of the repository whose revision property you wish to modify. Otherwise, you can simply provide the URL of any
path in the repository of interest (including the repository's root URL). For example, you might want to replace the commit log
message of an existing revision.* If your current working directory is part of aworking copy of your repository, you can simply run
the svn propset command with no target path:

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1ll --revprop
property 'svn:log' set on repository revision '11'
$

But even if you haven't checked out a working copy from that repository, you can still effect the property change by providing the
repository'sroot URL :

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1l --revprop \
http://svn. exanpl e. coni r epos/ pr oj ect

property 'svn:log' set on repository revision '11'

$

Note that the ability to modify these unversioned properties must be explicitly added by the repository administrator (see the sec-
tion called “Commit Log Message Correction”). That's because the properties aren't versioned, so you run the risk of losing in-
formation if you aren't careful with your edits. The repository administrator can set up methods to protect against this loss, and by
default, modification of unversioned propertiesis disabled.

Users should, where possible, use svn propedit instead of svn propset. While the end result of the commands is

_') identical, the former will allow them to see the current value of the property that they are about to change, which
helps them to verify that they are, in fact, making the change they think they are making. Thisis especially true when
modifying unversioned revision properties. Also, it is significantly easier to modify multiline property valuesin atext
editor than at the command line.

Properties and the Subversion Workflow

Now that you are familiar with al of the property-related svn subcommands, let's see how property modifications affect the usual
Subversion workflow. As we mentioned earlier, file and directory properties are versioned, just like your file contents. As a result,
Subversion provides the same opportunities for merging—cleanly or with conflicts—someone el se's modifications into your own.

As with file contents, your property changes are local modifications, made permanent only when you commit them to the reposit-
ory with svn commit. Y our property changes can be easily unmade, too—the svn revert command will restore your files and dir-
ectories to their unedited states—contents, properties, and all. Also, you can receive interesting information about the state of your
file and directory properties by using the svn status and svn diff commands.

4Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness’ in commit log messages is perhaps the most common use case for the - - r evpr op op-
tion.

58

Advanced Topics

$ svn status cal c/button.c
M calc/button.c
$ svn diff calc/button.c
Property changes on: cal c/button.c

Added: copyri ght

-0,0 +1

+(c) 2006 Red-Bean Software
$

Notice how the status subcommand displays Min the second column instead of the first. That is because we have modified the
propertieson cal ¢/ but t on. c, but not its textual contents. Had we changed both, we would have seen Min the first column, too.
(We cover svn statusin the section called “ See an overview of your changes”).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else. If you update your
working copy directory and receive property changes on a versioned object that clash with your own, Subversion will report
that the object isin a conflicted state.

$ svn update calc
Updating 'calc':
M cal c/ Makefile.in
Conflict for property 'linecount' discovered on 'calc/button.c'.
Sel ect: (p) postpone, (df) diff-full, (e) edit,
(s) show all options: p

C calc/button.c
Updated to revision 143.
Summary of conflicts:

Property conflicts: 1

Subversion will also create, in the same directory as the conflicted object, afilewith a. pr ej extension that contains the de-
tails of the conflict. Y ou should examine the contents of this file so you can decide how to resolve the conflict. Until the con-
flict isresolved, you will see a Cin the second column of svn status output for that object, and attempts to commit your local
modifications will fail.

$ svn status calc
C cal c/button.c
? cal c/button. c. prej
$ cat cal c/button.c.prej
Trying to change property 'linecount' from'1267' to '1301',
gut property has been locally changed from'1267' to '1256'.

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they should, and then use
the svn resolve --accept=wor king command to alert Subversion that you have manually resolved the problem.

59

Advanced Topics

You might also have noticed the nonstandard way that Subversion currently displays property differences. You can still use svn
diff and redirect its output to create a usable patch file. The patch program will ignore property patches—as arule, it ignores any
noise it can't understand. This does, unfortunately, mean that to fully apply a patch generated by svn diff using patch, any property
modifications will need to be applied by hand.

Subversion 1.7 improves this situation in two ways. First, its nonstandard display of property differencesis at least machine-read-
able—an improvement over the display of properties in versions prior to 1.7. But Subversion 1.7 also introduces the svn patch
subcommand, designed specifically to handle the additional information which svn diff's output can carry, applying those changes
to the Subversion working copy. Of specific relevance to our topic, property differences present in patch files generated by svn diff
in Subversion 1.7 or better can be automatically applied to a working copy by the svn patch command. For more about svn patch,
see svn patch in Chapter 9, Subversion Complete Reference.

There's one exception to how property changes are reported by svn diff: changes to Subversion's specia

/ svn: mer gei nf o property—used to track information about merges which have been performed in your reposit-
ory—are described in a more human-readable fashion. Thisis quite helpful to the humans who have to read those de-
scriptions. But it also serves to cause patching programs (including svn patch) to skip those change descriptions as
noise. This might sound like a bug, but it really isn't because this property isintended to be managed solely by the svn
mer ge subcommand. For more about merge tracking, see Chapter 4, Branching and Merging.

Automatic Property Setting

Properties are a powerful feature of Subversion, acting as key components of many Subversion features discussed elsewhere in this
and other chapters—textual diff and merge support, keyword substitution, newline translation, and so on. But to get the full benefit
of properties, they must be set on the right files and directories. Unfortunately, that step can be easily forgotten in the routine of
things, especially since failing to set a property doesn't usually result in an obvious error (at least compared to, say, failing to add a
file to version control). To help your properties get applied to the places that need them, Subversion provides a couple of simple
but useful features.

Whenever you introduce a file to version control using the svn add or svn import commands, Subversion tries to assist by setting
some common file properties automatically. First, on operating systems whose filesystems support an execute permission bit, Sub-
version will automatically set the svn: execut abl e property on newly added or imported files whose execute bit is enabled.
(See the section called “File Executability” later in this chapter for more about this property.)

Second, Subversion tries to determine the file's MIME type. If you've configured ani ne-t ypes-fi | es runtime configuration
parameter, Subversion will try to find a MIME type mapping in that file for your file's extension. If it finds such a mapping, it will
set your file's svn: mi nme-t ype property to the MIME type it found. If no mapping file is configured, or no mapping for your
file's extension could be found, Subversion will fall back to heuristic algorithms to determine the file's MIME type. Depending on
how it is built, Subversion 1.7 can make use of file scanning libraries® to detect a file's type based on its content. Failing all else,
Subversion will employ its own very basic heuristic to determine whether the file contains nontextual content. If so, it automatic-
aly sets the svn: m me-t ype property on that file to appl i cati on/ oct et - st r eam (the generic “this is a collection of
bytes” MIME type). Of course, if Subversion guesses incorrectly, or if you wish to set the svn: i ne-type property to
something more precise—perhaps i mage/ png or appl i cati on/ x- shockwave- f | ash—you can always remove or edit
that property. (For more on Subversion's use of MIME types, see the section called “File Content Type” later in this chapter.)

UTF-16 is commonly used to encode files whose semantic content is textual in nature, but the encoding itself makes

/ heavy use of bytes which are outside the typical ASCII character byte range. As such, Subversion will tend to classify
such files as binary files, much to the chagrin of users who desire line-based differencing and merging, keyword sub-
stitution, and other behaviors for those files.

Subversion also provides, via its runtime configuration system (see the section called “Runtime Configuration Ared’), a more flex-
ible automatic property setting feature that allows you to create mappings of filename patterns to property names and values. Once
again, these mappings affect adds and imports, and can not only override the default MIME type decision made by Subversion dur-

5Current|y, libmagic is the support library used to accomplish this.

60

Advanced Topics

ing those operations, but can also set additional Subversion or custom properties, too. For example, you might create a mapping
that says that anytime you add JPEG files—ones whose names match the pattern * . j pg—Subversion should automatically set the
svn: m ne-type property on those files to i nage/j peg. Or perhaps any files that match *. cpp should have
svn: eol -styl esettonati ve,andsvn: keywor ds setto| d. Automatic property support is perhaps the handiest property-re-
lated tool in the Subversion toolbox. See the section called “Config” for more about configuring that support.

which al connecting clients will automatically consider when operating on working copies checked out from that
server. Unfortunately, Subversion doesn't offer this feature. Administrators can use hook scripts to validate that the
properties added to and modified on files and directories match the administrator's preferred policies, rejecting com-
mits which are non-compliant in this fashion. (See the section called “Implementing Repository Hooks” for more
about hook scripts.) But there's no way to automatically dictate those preferences to Subversion clients beforehand.

O/ Subversion administrators commonly ask if it is possible to configure, on the server side, a set of property definitions

File Portability

Fortunately for Subversion users who routinely find themselves on different computers with different operating systems, Subver-
sion's command-line program behaves almost identically on all those systems. If you know how to wield svn on one platform, you
know how to wield it everywhere.

However, the same is not always true of other general classes of software or of the actual files you keep in Subversion. For ex-
ample, on a Windows machine, the definition of a “text file” would be similar to that used on a Linux box, but with a key differ-
ence—the character sequences used to mark the ends of the lines of those files. There are other differences, too. Unix platforms
have (and Subversion supports) symboalic links; Windows does not. Unix platforms use filesystem permission to determine execut-
ability; Windows uses filename extensions.

Because Subversion is in no position to unite the whole world in common definitions and implementations of all of these things,
the best it can do isto try to help make your life simpler when you need to work with your versioned files and directories on mul-
tiple computers and operating systems. This section describes some of the ways Subversion does this.

File Content Type

Subversion joins the ranks of the many applications that recognize and make use of Multipurpose Internet Mail Extensions
(MIME) content types. Besides being a genera-purpose storage location for a file's content type, the value of the
svn: m me- t ype file property determines some behavioral characteristics of Subversion itself.

Identifying File Types

Various programs on most modern operating systems make assumptions about the type and format of the contents of a file
by the file's name, specificaly its file extension. For example, files whose namesend in . t xt are generally assumed to be
human-readable; that is, able to be understood by simple perusal rather than requiring complex processing to decipher. Files
whose names end in . png, on the other hand, are assumed to be of the Portable Network Graphics type—not human-read-
able at all, and sensible only when interpreted by software that understands the PNG format and can render the information
in that format as a raster image.

Unfortunately, some of those extensions have changed their meanings over time. When personal computers first appeared, a
file named README. DOC would have ailmost certainly been a plain-text file, just like today's . t xt files. But by the mid-
1990s, you could almost bet that a file of that name would not be a plain-text file at al, but instead a Microsoft Word docu-
ment in a proprietary, non-human-readable format. But this change didn't occur overnight—there was certainly a period of
confusion for computer users over what exactly they had in hand when they saw a. DOCfile.

The popularity of computer networking cast still more doubt on the mapping between a file's name and its content. With in-
formation being served across networks and generated dynamically by server-side scripts, there was often no real file per se,
and therefore no filename. Web servers, for example, needed some other way to tell browsers what they were downloading

5y ou think that was rough? During that same era, WordPerfect also used . DOC for their proprietary file format's preferred extension!

61

Advanced Topics

so that the browser could do something intelligent with that information, whether that was to display the data using a pro-
gram registered to handle that datatype or to prompt the user for where on the client machine to store the downloaded data.

Eventually, a standard emerged for, among other things, describing the contents of a data stream. In 1996, RFC 2045 was
published. It was the first of five RFCs describing MIME. It describes the concept of media types and subtypes and recom-
mends a syntax for the representation of those types. Today, MIME media types—or “MIME types’—are used almost uni-
versally across email applications, web servers, and other software as the de facto mechanism for clearing up the file content
confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based merging of changes received from the
server during an update into your working file. But for files containing nontextual data, there is often no concept of a“line.” So, for
versioned fileswhose svn: mi me-t ype property is set to a nontextual MIME type (generally, something that doesn't begin with
t ext /, though there are exceptions), Subversion does not attempt to perform contextual merges during updates. Instead, any time
you have locally modified a binary working copy file that is also being updated, your file is left untouched and Subversion creates
two new files. Onefilehasa. ol dr ev extension and contains the BASE revision of thefile. The other filehasa. newr ev exten-
sion and contains the contents of the updated revision of the file. This behavior isrealy for the protection of the user against failed
attempts at performing contextual merges on files that ssmply cannot be contextually merged.

Thesvn: m me-t ype property, when set to a value that does not indicate textua file contents, can cause some un-
expected behaviors with respect to other properties. For example, since the idea of line endings (and therefore, line-
ending conversion) makes no sense when applied to nontextual files, Subversion will prevent you from setting the
svn: eol - st yl e property on such files. This is obvious when attempted on a single file target—svn propset will
error out. But it might not be as clear if you perform arecursive property set, where Subversion will silently skip over
filesthat it deems unsuitable for a given property.

Subversion provides a number of mechanisms by which to automatically set the svn: nmi ne-t ype property on a versioned file.
See the section called “ Automatic Property Setting” for details.

Also, if the svn: mi nme-t ype property is set, then the Subversion Apache module will use its value to populate the Cont ent -
t ype: HTTP header when responding to GET requests. This gives your web browser a crucial clue about how to display afile
when you use it to peruse your Subversion repository's contents.

File Executability

On many operating systems, the ability to execute a file as a command is governed by the presence of an execute permission bit.
This bit usually defaults to being disabled, and must be explicitly enabled by the user for each file that needs it. But it would be a
monumental hassle to have to remember exactly which filesin a freshly checked-out working copy were supposed to have their ex-
ecutable bits toggled on, and then to have to do that toggling. So, Subversion provides the svn: execut abl e property as a way
to specify that the executable bit for the file on which that property is set should be enabled, and Subversion honors that request
when populating working copies with such files.

This property has no effect on filesystems that have no concept of an executable permission hit, such as FAT32 and NTFS. Also,
although it has no defined values, Subversion will forceits value to * when setting this property. Finally, this property isvalid only
on files, not on directories.

End-of-Line Character Sequences

Unless otherwise noted using a versioned file'ssvn: m nme-t ype property, Subversion assumes the file contains human-readable
data. Generally speaking, Subversion uses this knowledge only to determine whether contextual difference reports for that file are
possible. Otherwise, to Subversion, bytes are bytes.

"The Windows fi lesystems use file extensions (such as. EXE, . BAT, and . COM) to denote executable files.
62

Advanced Topics

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) markers used in your files. Un-
fortunately, different operating systems have different conventions about which character sequences represent the end of a line of
text in afile. For example, the usual line-ending token used by software on the Windows platform is a pair of ASCII control char-
acters—a carriage return (CR) followed by aline feed (LF). Unix software, however, just uses the LF character to denote the end of
aline.

Not all of the various tools on these operating systems understand files that contain line endings in a format that differs from the
native line-ending style of the operating system on which they are running. So, typically, Unix programs treat the CR character
present in Windows files as aregular character (usually rendered as M, and Windows programs combine all of the lines of a Unix
file into one giant line because no carriage return-linefeed (or CRLF) character combination was found to denote the ends of the
lines.

This sensitivity to foreign EOL markers can be frustrating for folks who share a file across different operating systems. For ex-
ample, consider a source code file, and developers who edit this file on both Windows and Unix systems. If all the developers al-
ways use tools that preserve the line-ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read afile with foreign EOL markers, or convert the file's line endings
to the native style when the file is saved. If the former is true for a developer, he has to use an external conversion utility (such as
dos2unix or its companion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation. But both cases
result in afile that differs from the original quite literally on every line! Prior to committing his changes, the user has two choices.
Either he can use a conversion utility to restore the modified file to the same line-ending style that it was in before his edits were
made, or he can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to committed files. Wasted time is painful
enough. But when commits change every line in afile, this complicates the job of determining which of those lines were changed
in anontrivial way. Where was that bug really fixed? On what line was a syntax error introduced?

The solution to this problem isthe svn: eol - st yl e property. When this property is set to avalid value, Subversion usesit to de-
termine what special processing to perform on the file so that the file's line-ending style isn't flip-flopping with every commit that
comes from a different operating system. The valid values are;

native
This causes the file to contain the EOL markers that are native to the operating system on which Subversion was run. In other
words, if auser on a Windows machine checks out aworking copy that contains afile with an svn: eol - st yl e property set
tonati ve, that file will contain CRLF EOL markers. A Unix user checking out a working copy that contains the same file
will see LF EOL markersin his copy of thefile.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers regardless of the operating
system. Thisis basically transparent to the user, though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating system in use. Thisline-ending style
is hot very common.

Ignoring Unversioned ltems

In any given working copy, there is a good chance that alongside all those versioned files and directories are other files and direct-
ories that are neither versioned nor intended to be. Text editors litter directories with backup files. Software compilers generate in-
termediate—or even final—files that you typically wouldn't bother to version. And users themselves drop various other files and
directories wherever they seefit, often in version control working copies.

63

Advanced Topics

It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of clutter and impurity. In fact, Subver-
sion counts it as a feature that its working copies are just typica directories, just like unversioned trees. But these not-
to-be-versioned files and directories can cause some annoyance for Subversion users. For example, because the svn add and svn
import commands act recursively by default and don't know which filesin a given tree you do and don't wish to version, it's easy
to accidentally add stuff to version control that you didn't mean to. And because svn status reports, by default, every item of in-
terest in a working copy—including unversioned files and directories—its output can get quite noisy where many of these things
exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disregard. One of the ways involves the
use of Subversion's runtime configuration system (see the section called “Runtime Configuration Area’), and therefore applies to
all the Subversion operations that make use of that runtime configuration—generally those performed on a particular computer or
by a particular user of a computer. The other way makes use of Subversion's directory property support and is more tightly bound
to the versioned tree itself, and therefore affects everyone who has a working copy of that tree. Both of the mechanisms use file
patterns (strings of literal and special wildcard characters used to match against filenames) to decide which files to ignore.

The Subversion runtime configuration system provides an option, gl obal - i gnor es, whose value is a whitespace-delimited col-
lection of file patterns. The Subversion client checks these patterns against the names of the files that are candidates for addition to
version control, as well as to unversioned files that the svn status command notices. If any file's name matches one of the patterns,
Subversion will basically act asif the file didn't exist at all. Thisisreally useful for the kinds of files that you almost never want to
version, such as editor backup files such as Emacs * ~ and . * ~ files.

File Patterns in Subversion

File patterns (also called globs or shell wildcard patterns) are strings of characters that are intended to be matched against fi-
lenames, typically for the purpose of quickly selecting some subset of similar files from a larger grouping without having to
explicitly name each file. The patterns contain two types of characters: regular characters, which are compared explicitly
against potential matches, and special wildcard characters, which are interpreted differently for matching purposes.

There are different types of file pattern syntaxes, but Subversion uses the one most commonly found in Unix systems imple-
mented asthe f nmat ch system function. It supports the following wildcards, described here simply for your convenience:

?
Matches any single character

*

Matches any string of characters, including the empty string
[

Begins a character class definition terminated by] , used for matching a subset of characters

Y ou can see this same pattern matching behavior at a Unix shell prompt. The following are some examples of patterns being
used for various things:

$1s ### the book sources

appa- qui ckstart. xnl ch06- server -configuration. xnl
appb-svn-for-cvs-users. xni ch07- cust om zi ng- svn. xm
appc- webdav. xm ch08- enbeddi ng- svn. xni

book. xm ch09-ref erence. xm

ch00- pr ef ace. xml ch10- wor | d- peace-t hr u- svn. xml
ch01- f undament al - concept s. xml copyri ght. xm

ch02- basi c- usage. xm foreword. xm

ch03- advanced-t opi cs. xm i mages/

chO04- br anchi ng- and- ner gi ng. xm i ndex. xml

chO05-r eposi t ory-adm n. xni styl es. css

$ Is ch* ### the book chapters

Advanced Topics

ch0O0- pr ef ace. xm ch06- server - confi gurati on. xm
ch01-f undament al - concept s. xml chQ07- cust om zi ng- svn. xm
ch02- basi c- usage. xni ch08- enbeddi ng- svn. xm

ch03- advanced-t opi cs. xm ch09-r ef erence. xm

ch04- br anchi ng- and- ner gi ng. xm ch10-wor| d- peace-t hru-svn. xni
chO05-reposi t ory-adm n. xni

$ Is ch?0-* ### the book chapters whose nunbers end in zero

ch00- preface. xm ch10-wor | d- peace-t hru-svn. xnl

$ Is chO[3578] -* ### the book chapters that M ke is responsible for
ch03- advanced-t opi cs. xnl ch07- cust om zi ng- svn. xm

ghOS— reposi tory-adm n. xm ch08- enbeddi ng-svn. xn

File pattern matching is a bit more complex than what we've described here, but this basic usage level tends to suit the major-
ity of Subversion users.

When found on a versioned directory, the svn: i gnor e property is expected to contain a list of newline-delimited file patterns
that Subversion should use to determine ignorable objects in that same directory. These patterns do not override those found in the
gl obal -i gnor es runtime configuration option, but are instead appended to that list. And it's worth noting again that, unlike the
gl obal -i gnor es option, the patterns found in the svn: i gnor e property apply only to the directory on which that property is
set, and not to any of its subdirectories. The svn: i gnor e property is a good way to tell Subversion to ignore files that are likely
to be present in every user's working copy of that directory, such as compiler output or—to use an example more appropriate to
this book—the HTML, PDF, or PostScript files generated as the result of a conversion of some source DocBook XML files to a
more legible output format.

directories to version control. Once an object is under Subversion's control, the ignore pattern mechanisms no longer
apply to it. In other words, don't expect Subversion to avoid committing changes you've made to a versioned file
simply because that file's name matches an ignore pattern—Subversion always notices all of its versioned objects.

O/ Subversion's support for ignorable file patterns extends only to the one-time process of adding unversioned files and

Ignore Patterns for CVS Users

The Subversion svn: i gnor e property is very similar in syntax and function to the CVS. cvsi gnor e file. In fact, if you
are migrating a CV'S working copy to Subversion, you can directly migrate the ignore patterns by using the . cvsi gnor e
file asinput file to the svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'

There are, however, some differences in the ways that CVS and Subversion handle ignore patterns. The two systems use the
ignore patterns at some different times, and there are dight discrepancies in what the ignore patterns apply to. Also, Subver-
sion does not recognize the use of the! pattern as areset back to having no ignore patterns at all.

The global list of ignore patterns tends to be more a matter of personal taste and ties more closely to a user's particular tool chain
than to the details of any particular working copy's needs. So, the rest of this section will focus on the svn: i gnor e property and
its uses.

65

Advanced Topics

Say you have the following output from svn status:

$ svn status calc

M cal c/button.c
cal ¢/ cal cul at or
cal c/data.c
cal ¢/ debug_| og
cal ¢/ debug |l og. 1
cal ¢/ debug_| 0g. 2. gz
cal ¢/ debug_| og. 3. gz

N N N N N)

In this example, you have made some property modificationsto but t on. ¢, but in your working copy, you also have some unver-
sioned files: the latest cal cul at or program that you've compiled from your source code, a source file named dat a. ¢, and a set
of debugging output logfiles. Now, you know that your build system aways results in the cal cul at or program being
generated.s And you know that your test suite always leaves those debugging logfiles lying around. These facts are true for all
working copies of this project, not just your own. And you know that you aren't interested in seeing those things every time you
run svn status, and you are pretty sure that nobody else is interested in them either. So you usesvn propedit svn:ignore
cal ¢ to add someignore patternsto the cal c¢ directory.

$ svn propget svn:ignore calc
cal cul at or

debug | og*

$

After you've added this property, you will now have alocal property modification on the cal ¢ directory. But notice what else is
different about your svn status output:

$ svn status

M cal c
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Your cal cul at or compiled program and all those logfiles are still in your work-
ing copy; Subversion just isn't constantly reminding you that they are present and unversioned. And now with all the uninteresting
noise removed from the display, you are left with more intriguing items—such as that source code file dat a. ¢ that you probably
forgot to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If you actually want to see the ignored
files as part of the status report, you can passthe - - no- i gnor e option to Subversion:

$ svn status --no-ignore
M cal c
M cal c/button.c
| cal ¢/ cal cul ator
? cal c/data.c
I cal ¢/ debug_| og

8lsn't that the whole point of abuild system?

66

Advanced Topics

I cal ¢/ debug |l og. 1
I cal ¢/ debug_| og. 2. gz
I cal ¢/ debug_| og. 3. gz

As mentioned earlier, the list of file patterns to ignore is also used by svn add and svn import. Both of these operations involve
asking Subversion to begin managing some set of files and directories. Rather than force the user to pick and choose which filesin
atree she wishes to start versioning, Subversion uses the ignore patterns—both the global and the per-directory lists—to determine
which files should not be swept into the version control system as part of alarger recursive addition or import operation. And here
again, you can use the - - no- i gnor e option to tell Subversion to disregard its ignores list and operate on al the files and direct-
ories present.

are expanded into an explicit list of targets before Subversion operates on them, so running svn SUBCOMMVAND * is
just likerunningsvn SUBCOVMVAND filel file2 file3 ...Inthecaseof thesvn add command, this has an
effect similar to passing the - - no- i gnor e option. So instead of using awildcard, usesvn add --force . to
do abulk scheduling of unversioned things for addition. The explicit target will ensure that the current directory isn't
overlooked because of being already under version control, and the - - f or ce option will cause Subversion to crawl
through that directory, adding unversioned files while still honoring the svn: i gnor e property and gl obal -i g-
nor es runtime configuration variable. Be sure to also provide the - - dept h fi | es option to the svn add com-
mand if you don't want afully recursive crawl for things to add.

@j Even if svn: i gnor e is set, you may run into problems if you use shell wildcards in a command. Shell wildcards

Keyword Substitution

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a versioned file—into the contents
of the file itself. Keywords generally provide information about the last modification made to the file. Because this information
changes each time the file changes, and more importantly, just after the file changes, it is a hassle for any process except the ver-
sion control system to keep the data completely up to date. Left to human authors, the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on which it was modified. Y ou could bur-
den every author of that document to, just before committing their changes, also tweak the part of the document that describes
when it was last changed. But sooner or later, someone would forget to do that. Instead, smply ask Subversion to perform keyword
substitution on the Last ChangedDat e keyword. You control where the keyword is inserted into your document by placing a
keyword anchor at the desired location in thefile. Thisanchor isjust astring of text formatted as $Keywor dNane$.

All keywords are case-sensitive where they appear as anchorsin files: you must use the correct capitalization for the keyword to be
expanded. Y ou should consider the value of the svn: keywor ds property to be case-sensitive, too—certain keyword names will
be recognized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the following keywords, some of which have
aliases that you can also use:

Dat e
This keyword describes the last time the file was known to have been changed in the repository, and is of the form $Dat e:
2006- 07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $.Itmay aso be specified as Last ChangedDat e. Un-
likethe |l d keyword, which uses UTC, the Dat e keyword displays dates using the local time zone.

Revi si on
This keyword describes the last known revision in which this file changed in the repository, and looks something like
$Revi sion: 144 $. It may also be specified as Last ChangedRevi si on or Rev.

Aut hor
This keyword describes the last known user to change this file in the repository, and looks something like $Aut hor : harry

67

Advanced Topics

$. It may aso be specified asLast ChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and looks something like $Head URL :
http://svn. exanpl e. conf repos/trunk/cal c. c $. It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks something like $1 d: cal c. ¢ 148
2006- 07- 28 21:30:43Z sal ly $,andisinterpreted to mean that thefilecal c. ¢ waslast changed in revision 148 on
the evening of July 28, 2006 by the user sal | y. The date displayed by this keyword is in UTC, unlike that of the Dat e
keyword (which uses the local time zone).

Header
This keyword is similar to the | d keyword but contains the full URL of the latest revision of the item, identical to Head URL.
Its substitution looks something like $Header: http://svn. exanple.com repos/trunk/calc.c 148
2006-07-28 21:30:43Z sally $.

Several of the preceding descriptions use the phrase “last known” or similar wording. Keep in mind that keyword expansion is a
client-side operation, and your client “knows” only about changes that have occurred in the repository when you update your work-
ing copy to include those changes. If you never update your working copy, your keywords will never expand to different values
even if those versioned files are being changed regularly in the repository.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform textual substitu-
tions on your file contents unless explicitly asked to do so. After al, you might be writing adocument® about how to use keywords,
and you don't want Subversion to substitute your beautiful examples of unsubstituted keyword anchors!

To tell Subversion whether to substitute keywords on a particular file, we again turn to the property-related subcommands. The
svn: keywor ds property, when set on a versioned file, controls which keywords will be substituted on that file. The value is a
space-delimited list of keyword names or aliases.

For example, say you have aversioned file named weat her . t xt that lookslike this:

Here is the latest report fromthe front |ines.

$Last ChangedDat e$

Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

With no svn: keywor ds property set on that file, Subversion will do nothing special. Now, let's enable substitution of the
Last ChangedDat e keyword.

$ svn propset svn: keywords "Date Author" weather.txt
property 'svn: keywords' set on 'weather.txt'
$

Now you have made a local property modification on the weat her . t xt file. You will see no changes to the file's contents
(unless you made some of your own prior to setting the property). Notice that the file contained a keyword anchor for the Rev
keyword, yet we did not include that keyword in the property value we set. Subversion will happily ignore requests to substitute
keywords that are not present in the file and will not substitute keywords that are not present in the svn: keywor ds property
value.

S..or maybe even a section of abook ...

68

Advanced Topics

Immediately after you commit this property change, Subversion will update your working file with the new substitute text. |nstead
of seeing your keyword anchor $Last ChangedDat e$, you'll see its substituted result. That result also contains the name of the
keyword and continues to be delimited by the dollar sign ($) characters. And as we predicted, the Rev keyword was not substi-
tuted because we didn't ask for it to be.

Note also that we set the svn: keywords property to Date Author, yet the keyword anchor used the alias
$Last ChangedDat e$ and still expanded correctly:

Here is the latest report fromthe front |ines.

%Lasgsd’langedDate: 2006- 07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

If someone else now commits a change to weat her . t xt, your copy of that file will continue to display the same substituted
keyword value as before—until you update your working copy. At that time, the keywords in your weat her . t xt file will be re-
substituted with information that reflects the most recent known commit to that file.

Where's $GlobalRev$?

New users are often confused by how the Rev keyword works. Since the repository has a single, globally increasing revi-
sion number, many people assume that it is this number that is reflected by the Rev keyword's value. But Rev expands
to show the last revision in which the file changed, not the last revision to which it was updated. Understanding this clears
the confusion, but frustration often remains—without the support of a Subversion keyword to do so, how can you automatic-
ally get the global revision number into your files?

To do this, you need external processing. Subversion ships with a tool called svnversion, which was designed for just this
purpose. It crawls your working copy and generates as output the revision(s) it finds. Y ou can use this program, plus some
additional tooling, to embed that revision information into your files. For more information on svnversion, see the section
called “svnversion—Subversion Working Copy Version Info” in Chapter 9, Subversion Complete Reference.

You can also instruct Subversion to maintain a fixed length (in terms of the number of bytes consumed) for the substituted
keyword. By using a double colon (: :) after the keyword name, followed by a number of space characters, you define that fixed
width. When Subversion goes to substitute your keyword for the keyword and its value, it will essentially replace only those space
characters, leaving the overall width of the keyword field unchanged. If the substituted value is shorter than the defined field width,
there will be extra padding characters (spaces) at the end of the substituted field; if it istoo long, it is truncated with a special hash
(#) character just before the final dollar sign terminator.

For example, say you have a document in which you have some section of tabular data reflecting the document's Subversion
keywords. Using the original Subversion keyword substitution syntax, your file might look something like:

Rev: Revi si on of last commt
$Aut hor$: Author of last commt
$Dat e$: Date of |ast commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with keyword substitution enabled, of
COUrSE), you See:

$Rev: 12 $: Revi sion of |ast commt

69

Advanced Topics

$Author: harry $: Author of last commit
$Dat e: 2006-03-15 02: 33: 03 -0500 (Wed, 15 Mar 2006) $: Date of last conmt

The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so that it again looks tabular.
But that holds only as long as the keyword values are the same width. If the last committed revision rolls into a new place value
(say, from 99 to 100), or if another person with alonger username commits the file, stuff gets al crooked again. However, if you
are using Subversion 1.2 or later, you can use the new fixed-length keyword syntax and define some field widths that seem sane, so
your file might look like this:

$Rev: : $: Revision of last conmt
$Aut hor: : $: Author of last commt
$Dat e: : $: Date of |ast commit

Y ou commit this change to your file. This time, Subversion notices the new fixed-length keyword syntax and maintains the width
of the fields as defined by the padding you placed between the double colon and the trailing dollar sign. After substitution, the
width of the fields is completely unchanged—the short values for Rev and Aut hor are padded with spaces, and the long Dat e
field is truncated by a hash character:

$Rev:: 13 $: Revision of last conmt
$Aut hor:: harry $: Author of last conmt
$Date:: 2006-03-15 0#$%:. Date of last commt

The use of fixed-length keywords is especialy handy when performing substitutions into complex file formats that themselves use
fixed-length fields for data, or for which the stored size of a given data field is overbearingly difficult to modify from outside the
format's native application. Of course, where binary file formats are concerned, you must always take great care that any keyword
substitution you introduce—fixed-length or otherwise—does not violate the integrity of that format. While it might sound easy
enough, this can be an astonishingly difficult task for most of the popular binary file formats in use today, and not something to be
undertaken by the faint of heart!

Be aware that because the width of a keyword field is measured in bytes, the potential for corruption of multibyte val-
ues exists. For example, a username that contains some multibyte UTF-8 characters might suffer truncation in the
middle of the string of bytes that make up one of those characters. The result will be a mere truncation when viewed
at the byte level, but will likely appear as a string with an incorrect or garbled final character when viewed as UTF-8
text. It is conceivable that certain applications, when asked to load the file, would notice the broken UTF-8 text and
deem the entire file corrupt, refusing to operate on the file altogether. So, when limiting keywords to a fixed size,
choose a size that alows for this type of byte-wise expansion.

Sparse Directories

By default, most Subversion operations on directories act in a recursive manner. For example, svn checkout creates a working
copy with every file and directory in the specified area of the repository, descending recursively through the repository tree until
the entire structure is copied to your local disk. Subversion 1.5 introduces a feature called sparse directories (or shallow checkouts)
that allows you to easily check out a working copy—or a portion of a working copy—more shallowly than full recursion, with the
freedom to bring in previously ignored files and subdirectories at alater time.

For example, say we have arepository with atree of files and directories with names of the members of a human family with pets.

70

Advanced Topics

(It'san odd example, to be sure, but bear with us.) A regular svn checkout operation will give us aworking copy of the whole tree:

svn checkout file:///var/svn/repos nom
nonm son
noni son/ gr andson
nom daught er
noni daught er/ gr anddaught er 1
noni daught er/ gr anddaught er 1/ bunny1. t xt
nmont daught er/ gr anddaught er 1/ bunny2. t xt
nmoni daught er / gr anddaught er 2
nmoni daught er/fi shie. t xt
mom ki ttyl. txt
nmonl doggi el. t xt
ecked out revision 1.

®QP>P>BP>>>>>>B

Now, let's check out the same tree again, but this time we'll ask Subversion to give us only the topmost directory with none of its
children at al:

$ svn checkout file:///var/svn/repos nomenpty --depth enpty
Checked out revision 1
$

Notice that we added to our original svn checkout command line anew - - dept h option. This option is present on many of Sub-
version's subcommands and is similar to the - - non-r ecur si ve (-N) and - - r ecur si ve (- R) options. In fact, it combines,
improves upon, supercedes, and ultimately obsoletes these two older options. For starters, it expands the supported degrees of
depth specification available to users, adding some previously unsupported (or inconsistently supported) depths. Here are the depth
values that you can request for a given Subversion operation:

--depth enpty
Include only the immediate target of the operation, not any of itsfile or directory children.

--depth files
Include the immediate target of the operation and any of itsimmediate file children.

--depth i nmedi at es
Include the immediate target of the operation and any of its immediate file or directory children. The directory children will
themselves be empty.

--depth infinity
Include the immediate target, its file and directory children, its children's children, and so on to full recursion.

Of course, merely combining two existing options into one hardly constitutes a new feature worthy of a whole section in our book.
Fortunately, there is more to this story. This idea of depth extends not just to the operations you perform with your Subversion cli-
ent, but also as a description of a working copy citizen's ambient depth, which is the depth persistently recorded by the working
copy for that item. Its key strength is this very persistence—the fact that it is sticky. The working copy remembers the depth you've
selected for each item in it until you later change that depth selection; by default, Subversion commands operate on the working
copy citizens present, regardless of their selected depth settings.

71

Advanced Topics

You can check the recorded ambient depth of a working copy using the svn info command. If the ambient depth is
_) anything other than infinite recursion, svn info will display aline describing that depth value:

$ svn info nominmediates | grep ""Depth:"
Dept h: i nmedi at es
$

Our previous examples demonstrated checkouts of infinite depth (the default for svn checkout) and empty depth. Let's look now at
examples of the other depth values:

$ svn checkout file:///var/svn/repos nomfiles --depth files

A mmfiles/kittyl.txt

A momfil es/ doggi el. t xt

Checked out revision 1.

$ svn checkout file:///var/svn/repos nominmedi ates --depth i mmedi at es
A nom i mredi at es/ son

A nmom i nredi at es/ daught er
A nmom i nedi at es/ ki ttyl.txt
A nmom i nmedi at es/ doggi el. t xt

Checked out revision 1.

As described, each of these depths is something more than only the target, but something less than full recursion.

We've used svn checkout as an example here, but you'll find the - - dept h option present on many other Subversion commands,
too. In those other commands, depth specification is away to limit the scope of an operation to some depth, much like the way the
older - - non-recursi ve (-N)and - - r ecur si ve (- R) options behave. This means that when operating on a working copy of
some depth, while requesting an operation of a shallower depth, the operation is limited to that shallower depth. In fact, we can
make an even more genera statement: given a working copy of any arbitrary—even mixed—ambient depth, and a Subversion
command with some requested operational depth, the command will maintain the ambient depth of the working copy members
while still limiting the scope of the operation to the requested (or default) operational depth.

In addition to the - - dept h option, the svn update and svn switch subcommands also accept a second depth-related option: -
- set - dept h. It iswith this option that you can change the sticky depth of a working copy item. Watch what happens as we take
our empty-depth checkout and gradually telescope it deeper using svn updat e - - set - dept h NEW DEPTH TARGET:

$ svn update --set-depth files nmomenpty
Updating 'nomenpty':

A momenpty/ kittiel.txt

A mom enpt y/ doggi el. t xt

Updated to revision 1.

$ svn update --set-depth i medi ates nom enpty
Updating ' momenpty':

A nmom enpt y/ son

A nmom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity nmomenpty
Updating ' nomenpty':

A nom enpt y/ son/ gr andson

A nom enpt y/ daught er / gr anddaught er 1

72

Advanced Topics

A nom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt
A nmom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt
A nmom enpt y/ daught er/ gr anddaught er 2

A mom enpt y/ daught er/ fi shi el. t xt

gpdat ed to revision 1.

Aswe gradually increased our depth selection, the repository gave us more pieces of our tree.

In our example, we operated only on the root of our working copy, changing its ambient depth value. But we can independently
change the ambient depth value of any subdirectory inside the working copy, too. Careful use of this ability allows us to flesh out
only certain portions of the working copy tree, leaving other portions absent altogether (hence the “sparse” bit of the feature's
name). Here's an example of how we might build out a portion of one branch of our family's tree, enable full recursion on another
branch, and keep still other pieces pruned (absent from disk).

$rm-rf momenpty

$ svn checkout file:///var/svn/repos nomenpty --depth enpty
Checked out revision 1.

$ svn update --set-depth enpty nmom enpty/son

Updating ' nom enpty/son':

A nmom enpt y/ son

Updated to revision 1.

$ svn update --set-depth enpty nmom enpty/daught er

Updati ng ' nom enpty/ daughter' :

A nom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity nom enpty/ daught er/ granddaughterl
Updati ng ' nom enpt y/ daught er/ gr anddaught er 1" :

A nom enpt y/ daught er / gr anddaught er 1

A nom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt

A nom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt

gpdat ed to revision 1.

Fortunately, having a complex collection of ambient depths in a single working copy doesn't complicate the way you interact with
that working copy. You can still make, revert, display, and commit local modifications in your working copy without providing
any new options (including - - dept h and - - set - dept h) to the relevant subcommands. Even svn update works as it does else-
where when no specific depth is provided—it updates the working copy targets that are present while honoring their sticky depths.

Y ou might at this point be wondering, “ So what? When would | use this?’ One scenario where this feature finds utility istied to a
particular repository layout, specifically where you have many related or codependent projects or software modules living as sib-
lings in a single repository location (t r unk/ proj ect 1, t runk/ proj ect 2, t runk/ pr oj ect 3, etc.). In such scenarios, it
might be the case that you personally care about only a handful of those projects—maybe some primary project and a few other
modules on which it depends. Y ou can check out individual working copies of all of these things, but those working copies are dis-
joint and, as aresult, it can be cumbersome to perform operations across several or all of them at the same time. The aternative is
to use the sparse directories feature, building out a single working copy that contains only the modules you care about. You'd start
with an empty-depth checkout of the common parent directory of the projects, and then update with infinite depth only the items
you wish to have, like we demonstrated in the previous example. Think of it like an opt-in system for working copy citizens.

The origina (Subversion 1.5) implementation of shallow checkouts was good, but didn't support de-telescopi ng of working copy
items. Subversion 1.6 remedied this problem. For example, runnlng svn update --set-depth enpty inaninfinite-depth
working copy will discard everything but the topmost di rectory 9 Subversion 1.6 also introduced another supported value for the -

10s4fely, of course. Asin other situations, Subversion will leave on disk any files you've modified or which aren't versioned.

73

Advanced Topics

- set - dept h option: excl ude. Using - - set - dept h excl ude with svn update will cause the update target to be removed
from the working copy entirely—a directory target won't even be left present-but-empty. This is especialy handy when there are
more things that you'd like to keep in aworking copy than things you'd like to not keep.

Consider a directory with hundreds of subdirectories, one of which you would like to omit from your working copy. Using an
“additive” approach to sparse directories, you might check out the directory with an empty depth, then explicitly telescope (using
svn update --set-depth infinity)eachandevery subdirectory of the directory except the one you don't care about.

svn checkout http://svn. exanple.confrepos/ many-dirs --depth enpty
svn update --set-depth infinity many-dirs/wanted-dir-1

svn update --set-depth infinity many-dirs/wanted-dir-2

695 695 69; ©~

svn update --set-depth infinity many-dirs/wanted-dir-3

it and so on, and so on,

This could be quite tedious, especially since you don't even have stubs of these directoriesin your working copy to deal with. Such
aworking copy would aso have another characteristic that you might not expect or desire: if someone €lse creates any new subdir-
ectories in this top-level directory, you won't receive those when you update your working copy.

Beginning with Subversion 1.6, you can take a different approach. First, check out the directory in full. Thenrunsvn update -
-set -dept h excl ude on the one subdirectory you don't care about.

$ svn checkout http://svn.exanpl e.con repos/ many-dirs

$ svn update --set-depth exclude nmany-dirs/unwant ed-dir
D many-di r s/ unwant ed-di r
$

This approach leaves your working copy with the same stuff as in the first approach, but any new subdirectories which appear in
the top-level directory would also show up when you update your working copy. The downside of this approach is that you have to
actually check out that whole subdirectory that you don't even want just so you can tell Subversion that you don't want it. This
might not even be possible if that subdirectory is too large to fit on your disk (which might, after all, be the very reason you don't
want it in your working copy).

While the functionality for excluding an existing item from a working copy was hung off of the svn update com-

/ mand, you might have noticed that the output fromsvn updat e --set-depth excl ude differsfrom that of a
normal update operation. This output betrays the fact that, under the hood, exclusion is a completely client-side oper-
ation, very much unlike atypical update.

In such a situation, you might consider a compromise approach. First, check out the top-level directory with - - dept h i nredi -
at es. Then, exclude the directory you don't want using svn update --set-depth excl ude. Finaly, telescope al the
items that remain to infinite depth, which should be fairly easy to do because they are all addressable in your shell.

$ svn checkout http://svn.exanple.comrepos/ many-dirs --depth i nmedi ates

$ svn update --set-depth exclude many-dirs/unwant ed-dir
D many- di r s/ unwant ed-di r

74

Advanced Topics

$ svn update --set-depth infinity many-dirs/*

g

Once again, your working copy will have the same stuff as in the previous two scenarios. But now, any time a new file or subdir-
ectory is committed to the top-level directory, you'll receive it—at an empty depth—when you update your working copy. Y ou can
now decide what to do with such newly appearing working copy items. expand them into infinite depth, or exclude them altogeth-
er.

Locking

Subversion's copy-modify-merge version control model lives and dies on its data merging algorithms—specifically on how well
those algorithms perform when trying to resolve conflicts caused by multiple users modifying the same file concurrently. Subver-
sion itself provides only one such algorithm: athree-way differencing algorithm that is smart enough to handle data at a granularity
of asingle line of text. Subversion also allows you to supplement its content merge processing with external differencing utilities
(as described in the section called “External diff3” and the section called “External merge”), some of which may do an even better
job, perhaps providing granularity of aword or a single character of text. But common among those algorithms is that they gener-
ally work only on text files. The landscape starts to look pretty grim when you start talking about content merges of nontextual file
formats. And when you can't find a tool that can handle that type of merging, you begin to run into problems with the copy-
modify-merge model.

Let'slook at areal-life example of where this model runs aground. Harry and Sally are both graphic designers working on the same
project, a bit of marketing collateral for an automobile mechanic. Central to the design of a particular poster is an image of acar in
need of some bodywork, stored in afile using the PNG image format. The poster's layout is ailmost finished, and both Harry and
Sally are pleased with the particular photo they chose for their damaged car—a baby blue 1967 Ford Mustang with an unfortunate
bit of crumpling on the |eft front fender.

Now, as is common in graphic design work, there's a change in plans, which causes the car's color to be a concern. So Sally up-
dates her working copy to HEAD, fires up her photo-editing software, and sets about tweaking the image so that the car is now
cherry red. Meanwhile, Harry, fedling particularly inspired that day, decides that the image would have greater impact if the car
also appears to have suffered greater impact. He, too, updates to HEAD, and then draws some cracks on the vehicle's windshield.
He manages to finish his work before Saly finishes hers, and after admiring the fruits of his undeniable talent, he commits the
modified image. Shortly thereafter, Sally is finished with the car's new finish and tries to commit her changes. But, as expected,
Subversion fails the commit, informing Sally that her version of the image is now out of date.

Here's where the difficulty setsin. If Harry and Sally were making changes to a text file, Sally would simply update her working
copy, receiving Harry's changes in the process. In the worst possible case, they would have modified the same region of the file,
and Sally would have to work out by hand the proper resolution to the conflict. But these aren't text files—they are binary images.
And while it's a simple matter to describe what one would expect the results of this content merge to be, there is precious little
chance that any software exists that is smart enough to examine the common baseline image that each of these graphic artists
worked againgt, the changes that Harry made, and the changes that Sally made, and then spit out an image of a busted-up red Mus-
tang with a cracked windshield!

Of course, things would have gone more smoothly if Harry and Sally had serialized their modifications to the image—if, say,
Harry had waited to draw his windshield cracks on Sally's now-red car, or if Sally had tweaked the color of a car whose windshield
was aready cracked. Asis discussed in the section called “The copy-modify-merge solution”, most of these types of problems go
away entirely where perfect communication between Harry and Sally exists.!! But as one's version control system is, in fact, one
form of communication, it follows that having that software facilitate the serialization of nonparallelizable editing efforts is no bad
thing. This is where Subversion's implementation of the lock-modify-unlock model steps into the spotlight. This is where we talk
about Subversion's locking feature, which is similar to the “reserved checkouts’ mechanisms of other version control systems.

Subversion's locking feature exists ultimately to minimize wasted time and effort. By allowing a user to programmatically claim
the exclusive right to change afile in the repository, that user can be reasonably confident that any energy he invests on unmerge-

Hcommunication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that matter.

75

Advanced Topics

able changes won't be wasted—his commit of those changes will succeed. Also, because Subversion communicates to other users
that serialization is in effect for a particular versioned object, those users can reasonably expect that the object is about to be
changed by someone else. They, too, can then avoid wasting their time and energy on unmergeable changes that won't be commit-
table due to eventual out-of-dateness.

When referring to Subversion's Iocklng feature, oneis actually talking about a fairly diverse collection of behaviors, which include
the ability to lock a versioned file'? (claiming the exclusive right to modify the file), to unlock that file (yielding that exclusive
right to modify), to see reports about which files are locked and by whom, to annotate files for which locking before editing is
strongly advised, and so on. In this section, we'll cover all of these facets of the larger locking feature.

The Three Meanings of “Lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” describe a mechanism for mutual exclu-
sion between users to avoid clashing commits. Unfortunately, there are two other sorts of “lock” with which Subversion, and
therefore this book, sometimes needs to be concerned.

The second is working copy locks, used internally by Subversion to prevent clashes between multiple Subversion clients op-
erating on the same working copy. Thisis the sort of lock indicated by an L in the third column of svn status output, and re-
moved by the svn cleanup command, as described in the section called “ Sometimes Y ou Just Need to Clean Up”.

Third, there are database locks, used internally by the Berkeley DB backend to prevent clashes between multiple programs
trying to access the database. This is the sort of lock whose unwanted persistence after an error can cause a repository to be
“wedged,” as described in the section called “Berkeley DB Recovery”.

You can generally forget about these other kinds of locks until something goes wrong that requires you to care about them.
In this book, “lock” means the first sort unless the contrary is either clear from context or explicitly stated.

Creating Locks

In the Subversion repository, alock is a piece of metadata that grants exclusive access to one user to change afile. This user is said
to be the lock owner. Each lock also has a unique identifier, typically along string of characters, known as the lock token. The re-
pository manages locks, ultimately handling their creation, enforcement, and removal. If any commit transaction attempts to modi-
fy or delete a locked file (or delete one of the parent directories of the file), the repository will demand two pieces of informa
tion—that the client performing the commit be authenticated as the lock owner, and that the lock token has been provided as part of
the commit process as aform of proof that the client knows which lock it is using.

To demonstrate lock creation, let's refer back to our example of multiple graphic designers working on the same binary image files.
Harry has decided to change a JPEG image. To prevent other people from committing changes to the file while he is modifying it
(aswell as alerting them that he is about to change it), he locks the file in the repository using the svn lock command.

$ svn lock banana.jpg -m"Editing file for tonorrow s rel ease. "
" banana.j pg’ | ocked by user "harry'.

The preceding example demonstrates a number of new things. First, notice that Harry passed the - - message (- nj option to svn
lock. Similar to svn commit, the svn lock command can take comments—via either - - nessage (-m or --fil e (- F)—to de-
scribe the reason for locking the file. Unlike svn commit, however, svn lock will not demand a message by launching your pre-
ferred text editor. Lock comments are optional, but still recommended to aid communication.

Second, the lock attempt succeeded. This means that the file wasn't already locked, and that Harry had the latest version of the file.
If Harry's working copy of the file had been out of date, the repository would have rejected the request, forcing Harry to svn up-

125bversion does not currently allow locks on directories.

76

Advanced Topics

date and reattempt the locking command. The locking command would also have failed if the file had aready been locked by
someone else.

As you can see, the svn lock command prints confirmation of the successful lock. At this point, the fact that the file is locked be-
comes apparent in the output of the svn status and svn info reporting subcommands.

$ svn status
K banana.j pg

$ svn info banana.jpg

Pat h: banana. j pg

Narme: banana.] pg

Wor ki ng Copy Root Path: /home/ harry/ project

URL: http://svn.exanpl e.conirepos/ proj ect/banana. | pg
Repository Root: http://svn. exanpl e.confrepos/ project
Repository UUI D: edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 2198

Node Kind: file

Schedul e: nor mal

Last Changed Aut hor: frank

Last Changed Rev: 1950

Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006)
Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Checksum 3b110d3b10638f 5d1f 4f eOf 436a5a2a5

Lock Token: opaquel ockt oken: OcOf 600b- 88f 9- 0310- 9e48- 355b44d4a58e
Lock Omer: harry

Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006)

Lock Comment (1 line):

Editing file for tonorrow s rel ease.

$

The fact that the svn info command, which does not contact the repository when run against working copy paths, can display the
lock token reveals an important piece of information about those tokens: they are cached in the working copy. The presence of the
lock token is critical. It gives the working copy authorization to make use of the lock later on. Also, the svn status command
shows a K next to the file (short for locK ed), indicating that the lock token is present.

Regarding Lock Tokens

A lock token isn't an authentication token, so much as an authorization token. The token isn't a protected secret. In fact, a
lock's unique token is discoverable by anyonewho runssvn i nf o URL. A lock token is specia only when it livesinside a
working copy. It's proof that the lock was created in that particular working copy, and not somewhere else by some other cli-
ent. Merely authenticating as the lock owner isn't enough to prevent accidents.

For example, suppose you lock a file using a computer at your office, but leave work for the day before you finish your
changesto that file. It should not be possible to accidentally commit changes to that same file from your home computer |ater
that evening simply because you've authenticated as the lock's owner. In other words, the lock token prevents one piece of
Subversion-related software from undermining the work of another. (In our example, if you realy need to change the file
from an alternative working copy, you would need to break the lock and relock thefile.)

Now that Harry haslocked banana. j pg, Sally is unable to change or delete that file:

$ svn del ete banana.j pg

77

Advanced Topics

D banana. j pg
$ svn commit -m "Delete useless file."
Del eti ng banana. j pg

svn: E175002: Commit failed (details follow):
svn: E175002: Server sent unexpected return value (423 Locked) in response to
DELETE request for '/repos/project/!svn/wk/64bad3a9- 96f 9- 0310- 818a- df 4224ddc

ng/ banana. j pg'

But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the file. That's because he authenticates
as the lock owner and also because his working copy holds the correct lock token:

$ svn status

M K banana. j pg

$ svn commit -m "Make banana nore yel | ow'
Sendi ng banana. j pg

Transmitting file data .

Committed revision 2201.

$ svn status

Notice that after the commit is finished, svn status shows that the lock token is no longer present in the working copy. Thisis the
standard behavior of svn commit—it searches the working copy (or list of targets, if you provide such a list) for local modifica-
tions and sends all the lock tokens it encounters during this walk to the server as part of the commit transaction. After the commit
completes successfully, all of the repository locks that were mentioned are released—even on files that weren't committed. Thisis
meant to discourage users from being sloppy about locking or from holding locks for too long. If Harry haphazardly locks 30 files
in adirectory named i mages because he's unsure of which files he needs to change, yet changes only four of those files, when he
runssvn conmit i mages, the processwill still release all 30 locks.

This behavior of automatically releasing locks can be overridden with the - - no- unl ock option to svn commit. Thisis best used
for those times when you want to commit changes, but still plan to make more changes and thus need to retain existing locks. You
can also make this your default behavior by setting the no- unl ock runtime configuration option (see the section called “ Runtime
Configuration Area’).

Of course, locking afile doesn't oblige one to commit a changeto it. The lock can be released at any time with asimple svn unlock
command:

$ svn unl ock banana.c
' banana. c' unl ocked.

Discovering Locks

When acommit fails due to someone else'slocks, it's fairly easy to learn about them. The easiest way istorunsvn status - u:

$ svn status -u

M 23 bar.c
M 0] 32 raisin.jpg
* 72 foo. h

78

Advanced Topics

St at us agai nst revi sion: 105
$

In this example, Sally can see not only that her copy of f 0o. h isout of date, but also that one of the two modified files she plans
to commit is locked in the repository. The O symbol stands for “Other,” meaning that a lock exists on the file and was created by
somebody else. If she were to attempt a commit, the lock onr ai si n. j pg would prevent it. Sally is left wondering who made the
lock, when, and why. Once again, svn info has the answers:

$ svn info ~raisin.jpg

Pat h: raisin.jpg

Name: raisin.jpg

URL: http://svn.exanpl e.conirepos/project/raisin.jpg
Repository Root: http://svn. exanpl e.con repos/ proj ect
Repository UUI D: edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 105

Node Kind: file

Last Changed Author: sally

Last Changed Rev: 32

Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006)
Lock Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b
Lock Omer: harry

Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)

Lock Coment (1 line):

gbed to make a quick tweak to this inmage

Just as you can use svn info to examine objects in the working copy, you can also use it to examine objects in the repository. If the
main argument to svn info isaworking copy path, then all of the working copy's cached information is displayed; any mention of a
lock means that the working copy is holding a lock token (if afile islocked by another user or in another working copy, svn info
on aworking copy path will show no lock information at all). If the main argument to svn info is a URL, the information reflects
the latest version of an object in the repository, and any mention of alock describes the current lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16 to “make a quick tweak.” It being June, she
suspects that he probably forgot all about the lock. She might phone Harry to complain and ask him to release the lock. If he's un-
available, she might try to forcibly break the lock herself or ask an administrator to do so.

Breaking and Stealing Locks

A repository lock isn't sacred—in Subversion's default configuration state, locks can be released not only by the person who cre-
ated them, but by anyone. When somebody other than the original lock creator destroys a lock, we refer to this as breaking the
lock.

From the administrator's chair, it's simple to break locks. The svnlook and svnadmin programs have the ability to display and re-
move locks directly from the repository. (For more information about these tools, see the section called “An Administrator's
Toolkit”.)

$ svnadm n | sl ocks /var/svn/repos

Pat h: /project?2/imges/banana. | pg

UUI D Token: opaquel ockt oken: c32b4d88- e8f b- 2310- abb3- 153ff 1236923
Owner: frank

Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006)

Expi res:

79

Advanced Topics

Comment (1 line):
Still inproving the yellow col or.

Path: /project/raisin.jpg
UUI D Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b

Omnner: harry
Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)
Expi res:

Comment (1 line):
Need to nake a quick tweak to this imge.

$ svnadm n rm ocks /var/svn/repos /project/raisin.jpg
Removed | ock on '/project/raisin.jpg' .

The more interesting option is to allow users to break each other's locks over the network. To do this, Sally simply needs to pass
the - - f or ce to the svn unlock command:

$ svn status -u

M 23 bar. c

M 0] 32 raisin.jpg
* 72 foo.h

St at us agai nst revi sion: 105

$ svn unlock raisin.jpg

svn: E195013: 'raisin.jpg" is not |locked in this working copy

$ svn info raisin.jpg | grep URL

URL: http://svn.exanpl e.conlrepos/project/raisin.jpg

$ svn unl ock http://svn. exanpl e. conl repos/ project/raisin.jpg

svn: warning: WL60039: Unlock failed on 'raisin.jpg" (403 Forbi dden)
$ svn unlock --force http://svn. exanpl e. conf repos/ proj ect/raisin.jpg
éraisin.jpg‘ unl ocked.

Now, Saly'sinitial attempt to unlock failed because she ran svn unlock directly on her working copy of the file, and no lock token
was present. To remove the lock directly from the repository, she needs to pass a URL to svn unlock. Her first attempt to unlock
the URL fails, because she can't authenticate as the lock owner (nor does she have the lock token). But when she passes - - f or ce,
the authentication and authorization requirements are ignored, and the remote lock is broken.

Simply breaking alock may not be enough. In the running example, Sally may not only want to break Harry's long-forgotten lock,
but relock the file for her own use. She can accomplish this by using svn unlock with - - f or ce and then svn lock back-to-back,
but there's a small chance that somebody else might lock the file between the two commands. The simpler thing to do isto steal the
lock, which involves breaking and relocking the file al in one atomic step. To do this, Sally passes the - - f or ce option to svn
lock:

$ svn lock raisin.jpg

svn: warning: WL60035: Path '/project/raisin.jpg is already |ocked by user 'h
arry' in filesystem'/var/svn/repos/db'

$ svn lock --force raisin.jpg

éraisin.jpg‘ | ocked by user 'sally'.

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's working copy still contains the original

80

Advanced Topics

lock token, but that lock no longer exists. The lock token is said to be defunct. The lock represented by the lock token has either
been broken (no longer in the repository) or stolen (replaced with a different lock). Either way, Harry can see this by asking svn
status to contact the repository:

$ svn status
K raisin.jpg
$ svn status -u
B 32 raisin.jpg
St at us agai nst revi sion: 10
$ svn update
Updating '."':
B raisin.jpg
Updated to revision 105.
% svn status

5

If the repository lock was broken, then svn st at us - - show updat es (- u) displays a B (Broken) symbol next to the file. If
anew lock existsin place of the old one, then a T (sTolen) symbol is shown. Finally, svn update notices any defunct lock tokens
and removes them from the working copy.

Locking Policies

Different systems have different notions of how strict alock should be. Some folks argue that locks must be strictly enforced
at all costs, releasable only by the original creator or administrator. They argue that if anyone can break alock, chaos runs
rampant and the whole point of locking is defeated. The other side argues that locks are first and foremost a communication
tool. If users are constantly breaking each other's locks, it represents a cultural failure within the team and the problem falls
outside the scope of software enforcement.

Subversion defaults to the “softer” approach, but still allows administrators to create stricter enforcement policies through
the use of hook scripts. In particular, the pr e-1 ock and pr e- unl ock hooks alow administrators to decide when lock
creation and lock releases are allowed to happen. Depending on whether a lock already exists, these two hooks can decide
whether to allow a certain user to break or steal alock. The post -1 ock and post - unl ock hooks are also available, and
can be used to send email after locking actions. To learn more about repository hooks, see the section called “Implementing
Repository Hooks”.

Lock Communication

We've seen how svn lock and svn unlock can be used to create, release, break, and steal locks. This satisfies the goal of serializing
commit access to afile. But what about the larger problem of preventing wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles away, Sally wants to do the same
thing. She doesn't think torunsvn st at us - u, so she has no idea that Harry has already locked the file. She spends hours edit-
ing the file, and when she tries to commit her change, she discovers that either the file is locked or that she's out of date. Regard-
less, her changes aren't mergeable with Harry's. One of these two people has to throw away his or her work, and a lot of time has
been wasted.

Subversion's solution to this problem is to provide a mechanism to remind users that a file ought to be locked before the editing be-
gins. The mechanism is a special property: svn: needs- | ock. If that property is attached to afile (regardless of its value, which
isirrelevant), Subversion will try to use filesystem-level permissions to make the file read-only—unless, of course, the user has ex-
plicitly locked the file. When alock token is present (as a result of using svn lock), the file becomes read/write. When the lock is
released, the file becomes read-only again.

The theory, then, isthat if the image file has this property attached, Sally would immediately notice something is strange when she

81

Advanced Topics

opens the file for editing: many applications alert users immediately when a read-only file is opened for editing, and nearly all
would prevent her from saving changes to the file. This reminds her to lock the file before editing, whereby she discovers the
preexisting lock:

$ /usr/local/bin/ginp raisin.jpg

ginp: error: file is read-only!

$1s -1 raisin.jpg

-r--r--r-- 1sally sally 215589 Jun 8 19:23 raisin.jpg

$ svn lock raisin.jpg

svn: warni ng: WL60035: Path '/project/raisin.jpg" is already |ocked by user 'h
arry' in filesystem'/var/svn/repos/db'

$ svn info http://svn.exanpl e.com repos/project/raisin.jpg | grep Lock
Lock Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b

Lock Omer: harry

Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006)

Lock Comment (1 line):

ghking sonme tweaks. Locking for the next two hours.

Users and administrators alike are encouraged to attach the svn: needs- | ock property to any file that cannot be
_/J contextually merged. This is the primary technique for encouraging good locking habits and preventing wasted effort.

Note that this property is a communication tool that works independently from the locking system. In other words, any file can be
locked, whether or not this property is present. And conversely, the presence of this property doesn't make the repository require a
lock when committing.

Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the read-only reminder won't always
work. Sometimes applications misbehave and “hijack” the read-only file, silently allowing users to edit and save the file anyway.
There's not much that Subversion can do in this situation—at the end of the day, there's smply no substitution for good interper-
sonal communication.*®

Externals Definitions

Sometimesit is useful to construct aworking copy that is made out of a number of different checkouts. For example, you may want
different subdirectories to come from different locations in a repository or perhaps from different repositories altogether. You
could certainly set up such a scenario by hand—using svn checkout to create the sort of nested working copy structure you are try-
ing to achieve. But if this layout is important for everyone who uses your repository, every other user will need to perform the
same checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping of alocal directory to the
URL—and ideally a particular revision—of a versioned directory. In Subversion, you declare externals definitions in groups using
thesvn: ext er nal s property. You can create or modify this property using svn propset or svn propedit (see the section called
“Manipulating Properties”). It can be set on any versioned directory, and its value describes both the external repository location
and the client-side directory to which that location should be checked out.

The convenience of the svn: ext er nal s property is that once it is set on a versioned directory, everyone who checks out a
working copy with that directory also gets the benefit of the externals definition. In other words, once one person has made the ef-
fort to define the nested working copy structure, no one else has to bother—Subversion will, after checking out the original work-
ing copy, automatically also check out the external working copies.

13Except, perhaps, aclassic Vulcan mind-meld.

82

Advanced Topics

The relative target subdirectories of externals definitions must not already exist on your or other users sys
tems—Subversion will create them when it checks out the external working copy.

You aso get in the externals definition design all the regular benefits of Subversion properties. The definitions are versioned. If
you need to change an externals definition, you can do so using the regular property modification subcommands. When you com-
mit a change to the svn: ext er nal s property, Subversion will synchronize the checked-out items against the changed externals
definition when you next run svn updat e. The same thing will happen when others update their working copies and receive
your changes to the externals definition.

Becausethesvn: ext er nal s property has a multiline value, we strongly recommend that you use svn propedit in-
_') stead of svn propset.

Subversion releases prior to 1.5 honor an externals definition format that is a multiline table of subdirectories (relative to the ver-
sioned directory on which the property is set), optional revision flags, and fully qualified, absolute Subversion repository URLS.
An example of this might look as follows:

ttp://svn. exanpl e. conf r epos/ sounds
ttp://svn. exanpl e. cont ski nproj
ttp://svn. exanpl e. cont ski n- naker

rd- party/ sounds h
rd-party/skins -r148 h

$ svn propget svn:externals calc
t hi
t hi
third-party/skins/toolkit -r21 h

h
h
h

When someone checks out aworking copy of the cal ¢ directory referred to in the previous example, Subversion also continues to
check out the items found in its externals definition.

$ svn checkout http://svn.exanpl e.com repos/calc
A cal c

A cal c/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 148.

Fetching external iteminto cal c/third-party/sounds
A cal ¢/t hird-party/sounds/ di ng. ogg

A cal ¢/t hird-party/sounds/ dong. ogg

A cal ¢/ third-party/sounds/cl ang. ogg

A cal ¢/t hird-party/ sounds/ bang. ogg
A cal ¢/ third-party/sounds/twang. ogg
Checked out revision 14.

Fetching external iteminto cal c/third-party/skins

As of Subversion 1.5, though, a new format of the svn: ext er nal s property is supported. Externals definitions are still multil-
ine, but the order and format of the various pieces of information have changed. The new syntax more closely mimics the order of
arguments you might pass to svn checkout: the optional revision flags come first, then the external Subversion repository URL,
and finally the relative local subdirectory. Notice, though, that this time we didn't say “fully qualified, absolute Subversion reposit-
ory URLs.” That's because the new format supports relative URLs and URL s that carry peg revisions. The previous example of an
externals definition might, in Subversion 1.5, look like the following:

83

Advanced Topics

$ svn propget svn:externals calc

http://svn. exanpl e. conf repos/ sounds third-party/sounds
-r148 http://svn. exanpl e. com ski nproj third-party/skins
-r21 http://svn. exanpl e. coni ski n- naker third-party/skins/tool kit

Or, making use of the peg revision syntax (which we describe in detail in the section called “Peg and Operative Revisions’), it
might appear as.

vn propget svn:externals calc
p: //svn. exanpl e. coni repos/ sounds third-party/sounds
p://
p://

svn. exanpl e. coni ski nproj @48 third-party/skins
svn. exanpl e. com ski n- maker @1 third-party/skins/tool kit

You should seriously consider using explicit revision numbers in al of your externals definitions. Doing so means

_') that you get to decide when to pull down a different snapshot of external information, and exactly which snapshot to
pull. Besides avoiding the surprise of getting changes to third-party repositories that you might not have any control
over, using explicit revision numbers also means that as you backdate your working copy to a previous revision, your
externals definitions will also revert to the way they looked in that previous revision, which in turn means that the ex-
ternal working copies will be updated to match the way they looked back when your repository was at that previous
revision. For software projects, this could be the difference between a successful and a failed build of an older snap-
shot of your complex codebase.

For most repositories, these three ways of formatting the externals definitions have the same ultimate effect. They al bring the
same benefits. Unfortunately, they all bring the same annoyances, too. Since the definitions shown use absolute URLS, moving or
copying a directory to which they are attached will not affect what gets checked out as an externa (though the relative local target
subdirectory will, of course, move with the renamed directory). This can be confusing—even frustrating—in certain situations. For
example, say you have atop-level directory named ny - pr oj ect , and you've created an externals definition on one of its subdir-
ectories (my-project/sonme-dir) that tracks the latest revision of another of its subdirectories (ny-

proj ect/external -dir).

$ svn checkout http://svn.exanpl e.com projects .
A nmy- pr oj ect

A nmy-proj ect/sone-dir

A nmy-proj ect/external -dir

Fet chi ng external iteminto 'ny-project/sone-dir/subdir’
Checked out external at revision 11.

Checked out revision 11.
$ svn propget svn:externals my-project/sone-dir
subdir http://svn. exanpl e.conf projects/ my-project/external-dir

$

Now you use svnh move to rename the my- pr oj ect directory. At this point, your externals definition will still refer to a path un-
der the my- pr oj ect directory, even though that directory no longer exists.

Advanced Topics

$ svn nmove -q ny-project renaned-project

$ svn conmit -m "Renane ny-project to renaned-project."”
Del eti ng nmy- pr oj ect

Addi ng r enamed- pr oj ect

Conmitted revision 12.
$ svn update
Updating '.":

svn: warni ng: W200000: Error handling externals definition for 'renaned-projec
t/some-dir/subdir':

svn: warning: WL70000: URL 'http://svn.exanpl e.coni projects/ ny-project/externa
I-dir' at revision 12 doesn't exist

At revision 12.

givn: E205011: Failure occurred processing one or nore externals definitions

Also, absolute URL s can cause problems with repositories that are available via multiple URL schemes. For example, if your Sub-
version server is configured to allow everyone to check out the repository over ht t p: // or htt ps://, but only alow commits
tocomeinviahtt ps://,you have an interesting problem on your hands. If your externals definitions usethe ht t p: // form of
the repository URLS, you won't be able to commit anything from the working copies created by those externals. On the other hand,
if they usetheht t ps:// form of the URLS, anyone who might be checking out viaht t p: // because his client doesn't support
htt ps:// will be unable to fetch the external items. Be aware, too, that if you need to reparent your working copy (using svn re-
locate), externals definitions will not also be reparented.

Subversion 1.5 takes a huge step in relieving these frustrations. As mentioned earlier, the URLs used in the new externals defini-
tion format can be relative, and Subversion provides syntax magic for specifying multiple flavors of URL relativity.

A
Relative to the URL of the directory on whichthesvn: ext er nal s property is set

~
Relative to the root of the repository in which the svn: ext er nal s property is versioned

/1
Relative to the scheme of the URL of the directory on which thesvn: ext er nal s property is set

Relative to the root URL of the server on which thesvn: ext er nal s property isversioned

A .. | REPO- NAMVE
Relative to a sibling repository beneath the same SVNParent Pat h location as the repository in which the
svn: ext er nal s isdefined.

So, looking a fourth time at our previous externals definition example, and making use of the new absolute URL syntax in various
ways, we might now see:

$ svn propget svn:externals calc

Al sounds third-party/sounds

/ ski nproj @48 third-party/skins

{$/ svn. exanpl e. coni ski n- maker @1 third-party/skins/tool kit

85

Advanced Topics

Subversion 1.6 brought two more improvements to externals definitions. First, it added a quoting and escape mechanism to the
syntax so that the path of the external working copy may contain whitespace. This was previously problematic, of course, because
whitespace is used to delimit the fields in an externals definition. Now you need only wrap such a path specification in double-
guote (") characters or escape the problematic characters in the path with a backslash (\) character. Of course, if you have spaces
in the URL portion of the external definition, you should use the standard URI-encoding mechanism to represent those.

$ svn propget svn:externals paint

http://svn.thirdparty. conf repos/ My%20Proj ect "My Project"
http://

$

svn. thirdparty. conlrepos/ %22Quot es¥%20Too%22 \" Quot es\ Too\"

Subversion 1.6 also introduced support for external definitions for files. File externals are configured just like externals for direct-
ories and appear as aversioned file in the working copy.

For example, let's say you had the file/ t r unk/ bi keshed/ bl ue. ht m in your repository, and you wanted this file, as it ap-
peared in revision 40, to appear in your working copy of / t r unk/ ww/ asgreen. htm .

The external s definition required to achieve this should ook familiar by now:

$ svn propget svn:externals www

Al trunk/ bi keshed/ bl ue. ht Ml @0 green. htm
$ svn update

Updating '."':

Fetching external iteminto ' ww
E ww/ gr een. ht m
Updat ed external to revision 40.

Update to revision 103.
$ svn status

X ww/ green. ht n
$

As you can see in the previous output, Subversion denotes file externals with the letter E when they are fetched into the working
copy, and with the letter X when showing the working copy status.

While directory externals can place the external directory at any depth, and any missing intermediate directories will
be created, file externals must be placed into aworking copy that is already checked out.

When examining the file external with svn info, you can see the URL and revision the external is coming from:

$ svn info ww green. htm

Pat h: www/ green. htm

Name: green. htn

Wor ki ng Copy Root Path: /hone/harry/ projects/ ny-project

URL: http://svn.exanpl e.coni projects/ nmy-project/trunk/bi keshed/ bl ue. ht n
Repository Root: http://svn. exanpl e.cont projects/ny-project

Repository UUI D: b2a368dc- 7564- 11de- bb2b- 113435390e17

Revi si on: 40

Node kind: file

86

Advanced Topics

Schedul e: nor nal

Last Changed Author: harry

Last Changed Rev: 40

Last Changed Date: 2009-07-20 20:38:20 +0100 (Mon, 20 Jul 2009)
Text Last Updated: 2009-07-20 23:22:36 +0100 (Mon, 20 Jul 2009)
ghecksum 01a58b04617b92492d99662c3837b33b

Because file externals appear in the working copy as versioned files, they can be modified and even committed if they reference a
file at the HEAD revision. The committed changes will then appear in the externa as well as the file referenced by the external.
However, in our example, we pinned the external to an older revision, so attempting to commit the external fails:

$ svn status

M X ww/ green. htm

$ svn commit -m "change the color" ww/ green. htmn

Sendi ng ww/ gr een. ht m

svn: E155011: Commit failed (details follow):

;vn: E155011: File '/trunk/bi keshed/blue.htm' is out of date

Keep thisin mind when defining file externals. If you need the external to refer to a certain revision of afile you will not be able to
modify the external. If you want to be able to modify the external, you cannot specify a revision other than the HEAD revision,
which isimplied if no revision is specified.

Unfortunately, the support which exists for externals definitions in Subversion remains less than ideal. Both file and directory ex-
ternals have shortcomings. For either type of external, the local subdirectory part of the definition cannot contain . . parent direct-
ory indicators (such as . . /. ./ ski ns/ myski n). File externals cannot refer to files from other repositories. A file external's
URL must aways be in the same repository as the URL that the file external will be inserted into. Also, file externals cannot be
moved or deleted. Thesvn: ext er nal s property must be modified instead. However, file externals can be copied.

Perhaps most disappointingly, the working copies created via the externals definition support are still disconnected from the
primary working copy (on whose versioned directories the svn: ext er nal s property was actually set). And Subversion still
truly operates only on nondisjoint working copies. So, for example, if you want to commit changes that you've made in one or
more of those external working copies, you must run svn commit explicitly on those working copies—committing on the primary
working copy will not recurse into any external ones.

We've aready mentioned some of the additional shortcomings of the old svn: ext er nal s format and how the newer Subversion
1.5 format improves upon it. But be careful when making use of the new format that you don't inadvertently introduce new prob-
lems. For example, while the latest clients will continue to recognize and support the original externals definition format, pre-1.5
clients will not be able to correctly parse the new format. If you change al your externals definitions to the newer format, you ef-
fectively force everyone who uses those externals to upgrade their Subversion clients to a version that can parse them. Also, be
careful to avoid naively relocating the - r NNN portion of the definition—the older format uses that revision as a peg revision, but
the newer format uses it as an operative revision (with a peg revision of HEAD unless otherwise specified; see the section called
“Peg and Operative Revisions’ for afull explanation of the distinction here).

External working copies are still completely self-sufficient working copies. Y ou can operate directly on them as you
would any other working copy. This can be a handy feature, allowing you to examine an external working copy inde-
pendently of any primary working copy whose svn: ext er nal s property caused its instantiation. Be careful,
though, that you don't inadvertently modify your external working copy in subtle ways that cause problems. For ex-
ample, while an externals definition might specify that the external working copy should be held at a particular revi-
sion number, if you run svn update directly on the external working copy, Subversion will oblige, and now your ex-
ternal working copy is out of sync with its declaration in the primary working copy. Using svn switch to directly

87

Advanced Topics

switch the external working copy (or some portion thereof) to another URL could cause similar problems if the con-
tents of the primary working copy are expecting particular contents in the external content.

Besides the svn checkout, svn update, svn switch, and svn export commands which actually manage the digjoint (or disconnec-
ted) subdirectories into which externals are checked out, the svn status command also recognizes externals definitions. It displays
a status code of X for the digoint external subdirectories, and then recurses into those subdirectories to display the status of the ex-
ternal items themselves. You can pass the - - i gnor e- ext er nal s option to any of these subcommands to disable externals
definition processing.

Changelists

It is commonplace for a developer to find himself working at any given time on multiple different, distinct changes to a particular
bit of source code. Thisisn't necessarily due to poor planning or some form of digital masochism. A software engineer often spots
bugs in his peripheral vision while working on some nearby chunk of source code. Or perhaps he's halfway through some large
change when he realizes the solution he's working on is best committed as several smaller logical units. Often, these logical units
aren't nicely contained in some module, safely separated from other changes. The units might overlap, modifying different filesin
the same module, or even modifying different linesin the samefile.

Developers can employ various work methodologies to keep these logical changes organized. Some use separate working copies of
the same repository to hold each individual change in progress. Others might choose to create short-lived feature branches in the
repository and use a single working copy that is constantly switched to point to one such branch or another. Still others use diff and
patch tools to back up and restore uncommitted changes to and from patch files associated with each change. Each of these meth-
ods has its pros and cons, and to a large degree, the details of the changes being made heavily influence the methodology used to
distinguish them.

Subversion provides a changelists feature that adds yet another method to the mix. Changelists are basically arbitrary labels
(currently at most one per file) applied to working copy files for the express purpose of associating multiple files together. Users of
many of Google's software offerings are familiar with this concept aready. For example, Gmail [http://mail.google.com/] doesn't
provide the traditional folders-based email organization mechanism. In Gmail, you apply arbitrary labels to emails, and multiple
emails can be said to be part of the same group if they happen to share a particular label. Viewing only a group of similarly labeled
emails then becomes a simple user interface trick. Many other Web 2.0 sites have similar mechanisms—consider the “tags’ used
by sites such as YouTube [http://www.youtube.com/] and Flickr [http://www.flickr.com/], “categories’ applied to blog posts, and
so on. Folks understand today that organization of datais critical, but that how that datais organized needs to be a flexible concept.
The old files-and-folders paradigm is too rigid for some applications.

Subversion's changelist support allows you to create changelists by applying labels to files you want to be associated with that
changelist, remove those labels, and limit the scope of the files on which its subcommands operate to only those bearing a particu-
lar [abel. In this section, we'll ook in detail at how to do these things.

Creating and Modifying Changelists

Y ou can create, modify, and delete changelists using the svn changelist command. More accurately, you use this command to set
or unset the changelist association of a particular working copy file. A changelist is effectively created the first time you label afile
with that changelist; it is deleted when you remove that label from the last file that had it. Let's examine a usage scenario that
demonstrates these concepts.

Harry isfixing some bugs in the calculator application's mathematics logic. His work leads him to change a couple of files:

$ svn status

M i nteger.c
M mat hops. ¢
$

88

http://mail.google.com/
http://mail.google.com/
http://www.youtube.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.flickr.com/

Advanced Topics

While testing his bug fix, Harry notices that his changes bring to light a tangentially related bug in the user interface logic found in
but t on. c. Harry decides that he'll go ahead and fix that bug, too, as a separate commit from his math fixes. Now, in a small
working copy with only a handful of files and few logical changes, Harry can probably keep his two logical change groupings
mentally organized without any problem. But today he's going to use Subversion's changelists feature as a special favor to the au-
thors of this book.

Harry first creates a changelist and associates with it the two files he's already changed. He does this by using the svn changelist
command to assign the same arbitrary changelist name to those files:

$ svn changelist math-fixes integer.c mathops.c
A [math-fixes] integer.c

A [mat h-fixes] mathops.c

$ svn status

- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

nZ

Asyou can see, the output of svn status reflects this new grouping.

Harry now sets off to fix the secondary Ul problem. Since he knows which file he'll be changing, he assigns that path to a changel-
ist, too. Unfortunately, Harry carelessly assigns thisthird file to the same changelist as the previous two files:

$ svn changelist math-fixes button.c
A [math-fixes] button.c
$ svn status

--- Changelist 'math-fixes':
button.c

M i nteger.c

Q;/I mat hops. ¢

Fortunately, Harry catches his mistake. At this point, he has two options. He can remove the changelist association from but -
t on. ¢, and then assign a different changelist name:

$ svn changelist --renpbve button.c
D [mat h-fixes] button.c

$ svn changelist ui-fix button.c
é[ui-fix] button.c

Or, he can skip the removal and just assign a new changelist name. In this case, Subversion will first warn Harry that but t on. ¢
is being removed from the first changelist:

$ svn changelist ui-fix button.c
D [math-fixes] button.c

89

Advanced Topics

AJui-fix] button.c
$ svn status

--- Changelist "ui-fix':
button.c

--- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

»nZ

Harry now has two distinct changelists present in his working copy, and svn status will group its output according to these
changelist determinations. Notice that even though Harry hasn't yet modified but t on. c, it till shows up in the output of svn
status as interesting because it has a changelist assignment. Changelists can be added to and removed from files at any time, re-
gardless of whether they contain local modifications.

Harry now fixes the user interface problemin but t on. c.

$ svn status

--- Changelist "ui-fix':

M button.c

--- Changelist 'math-fixes':
M i nteger.c

M mat hops. ¢

$

Changelists As Operation Filters

The visual grouping that Harry sees in the output of svn status as shown in our previous section is nice, but not entirely useful. The
status command is but one of many operations that he might wish to perform on his working copy. Fortunately, many of Subver-
sion's other operations understand how to operate on changelists viathe use of the - - changel i st option.

When provided with a- - changel i st option, Subversion commands will limit the scope of their operation to only those filesto
which a particular changelist name is assigned. If Harry now wants to see the actual changes he's made to the files in his mat h-
fi xes changelist, he could explicitly list only the files that make up that changelist on the svn diff command line.

$ svn diff integer.c mathops.c
I ndex: integer.c

--- integer.c (revision 1157)
+++ integer.c (working copy)

--- mathops.c (revision 1157)
+++ mat hops. ¢ (wor ki ng copy)

90

Advanced Topics

That works okay for afew files, but what if Harry's change touched 20 or 30 files? That would be an annoyingly long list of expli-
citly named files. Now that he's using changelists, though, Harry can avoid explicitly listing the set of filesin his changelist from
now on, and instead provide just the changelist name:

$ svn diff --changelist math-fixes
I ndex: integer.c

--- integer.c (revision 1157)
+++ integer.c (working copy)

| ndex: mat hops. c

--- mathops.c (revision 1157)
+++ mat hops. ¢ (wor ki ng copy)

And when it's time to commit, Harry can again use the - - changel i st option to limit the scope of the commit to filesin a cer-
tain changelist. He might commit his user interface fix by doing the following:

$ svn commit -m"Fix a U bug found while working on math logic." \
--changelist ui-fix

Sendi ng button.c

Transmitting file data .

gorrm'tted revision 1158.

In fact, the svn commit command provides a second changelists-related option: - - keep- changel i st s. Normally, changelist
assignments are removed from files after they are committed. But if - - keep- changel i st s is provided, Subversion will leave
the changelist assignment on the committed (and now unmodified) files. In any case, committing files assigned to one changelist
leaves other changelists undisturbed.

$ svn status

--- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

n

eration. For example, on a commit operation specified assvn commit /path/to/ dir, thetarget is the direct-
ory / pat h/ t o/ di r and its children (to infinite depth). If you then add a changelist specifier to that command, only
those files in and under / pat h/ t o/ di r that are assigned that changelist name will be considered as targets of the
commit—the commit will not include files located elsewhere (such asin/ pat h/ t o/ anot her - di r), regardless of
their changelist assignment, even if they are part of the same working copy as the operation's target(s).

<> The - - changel i st option acts only as afilter for Subversion command targets, and will not add targets to an op-

Even the svn changelist command acceptsthe - - changel i st option. This allows you to quickly and easily rename or remove a
changelist:

91

Advanced Topics

vn changel i st mat h-bugs --changelist math-fixes --depth infinity .
h-fixes] integer.c

h- bugs] integer.c

h-fi xes] mathops. c

h- bugs] mat hops. c

vn changelist --renove --changelist math-bugs --depth infinity .
mat h- bugs] integer.c

mat h- bugs] nat hops. c

ma
m
m
ma

S
[
[
[
[
S
[
[

LoOON>0>0O%

Finally, you can specify multiple instances of the - - changel i st option on a single command line. Doing so limits the operation
you are performing to files found in any of the specified changesets.

Changelist Limitations

Subversion's changelist feature is a handy tool for grouping working copy files, but it does have a few limitations. Changelists are
artifacts of a particular working copy, which means that changelist assignments cannot be propagated to the repository or otherwise
shared with other users. Changelists can be assigned only to files—Subversion doesn't currently support the use of changelists with
directories. Finally, you can have at most one changelist assignment on a given working copy file. Here is where the blog post cat-
egory and photo service tag analogies break down—if you find yourself needing to assign a file to multiple changelists, you're out
of luck.

Network Model

At some point, you're going to need to understand how your Subversion client communicates with its server. Subversion's network-
ing layer is abstracted, meaning that Subversion clients exhibit the same general behaviors no matter what sort of server they are
operating against. Whether speaking the HTTP protocol (ht t p: / /) with the Apache HTTP Server or speaking the custom Sub-
version protocol (svn: / /) with svnserve, the basic network model is the same. In this section, we'll explain the basics of that net-
work model, including how Subversion manages authentication and authorization matters.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information from a remote repository,
however, it makes a network request, and the server responds with an appropriate answer. The details of the network protocol are
hidden from the user—the client attempts to access a URL, and depending on the URL scheme, a particular protocol is used to con-
tact the server (see the section called “ Addressing the Repository™).

oj Runsvn --versi on to seewhich URL schemes and protocols the client knows how to use.

When the server process receives a client request, it often demands that the client identify itself. It issues an authentication chal-
lenge to the client, and the client responds by providing credentials back to the server. Once authentication is complete, the server
responds with the original information that the client asked for. Notice that this system is different from systems such as CVS,
where the client preemptively offers credentials (“logs in”) to the server before ever making a request. In Subversion, the server
“pulls’ credentials by challenging the client at the appropriate moment, rather than the client “pushing” them. This makes certain
operations more elegant. For example, if a server is configured to alow anyone in the world to read a repository, the server will
never issue an authentication challenge when a client attempts to svn checkout.

If the particular network requests issued by the client result in a new revision being created in the repository (e.g., svn commit),
Subversion uses the authenticated username associated with those requests as the author of the revision. That is, the authenticated
user's name is stored as the value of the svn: aut hor property on the new revision (see the section called “ Subversion Proper-
ties” in Chapter 9, Subversion Complete Reference). If the client was not authenticated (i.e., if the server never issued an authentic-

92

Advanced Topics

ation challenge), therevision'ssvn: aut hor property is empty.

Client Credentials

Many Subversion servers are configured to require authentication. Sometimes anonymous read operations are allowed, while write
operations must be authenticated. In other cases, reads and writes alike require authentication. Subversion's different server options
understand different authentication protocols, but from the user's point of view, authentication typically boils down to usernames
and passwords. Subversion clients offer several different ways to retrieve and store a user's authentication credentials, from inter-
active prompting for usernames and passwords to encrypted and non-encrypted on-disk data caches.

The security-conscious reader will suspect immediately that there is reason for concern here. “Caching passwords on disk? That's
terrible! Y ou should never do that!” Don't worry—it's not as bad as it sounds. The following sections discuss the various types of
credential caches that Subversion uses, when it uses them, and how to disable that functionality in whole or in part.

Caching credentials

Subversion offers a remedy for the annoyance caused when users are forced to type their usernames and passwords over and over
again. By default, whenever the command-line client successfully responds to a server's authentication challenge, credentials are
cached on disk and keyed on a combination of the server's hostname, port, and authentication realm. This cache will then be auto-
matically consulted in the future, avoiding the need for the user to re-type his or her authentication credentials. If seemingly suit-
able credentials are not present in the cache, or if the cached credentials ultimately fail to authenticate, the client will, by default,
fall back to prompting the user for the necessary information.

The Subversion developers recognize that on-disk caches of authentication credentials can be a security risk. To offset this, Sub-
version works with available mechanisms provided by the operating system and environment to try to minimize the risk of leaking
thisinformation.

» On Windows, the Subversion client stores passwords in the Y%APPDATA% Subver si on/ aut h/ directory. On Windows 2000
and later, the standard Windows cryptography services are used to encrypt the password on disk. Because the encryption key is
managed by Windows and istied to the user's own login credentials, only the user can decrypt the cached password. (Note that if
the user's Windows account password is reset by an administrator, all of the cached passwords become undecipherable. The Sub-
version client will behave as though they don't exist, prompting for passwords when required.)

» Similarly, on Mac OS X, the Subversion client stores al repository passwords in the login keyring (managed by the Keychain
service), which is protected by the user's account password. User preference settings can impose additional policies, such as re-
quiring that the user's account password be entered each time the Subversion password is used.

* For other Unix-like operating systems, no single standard “keychain” service exists. However, the Subversion client knows how
to store passwords securely using the “GNOME Keyring” and “KDE Wallet” services. Also, before storing unencrypted pass-
wordsinthe ~/ . subver si on/ aut h/ caching area, the Subversion client will ask the user for permission to do so. Note that
the aut h/ caching area is still permission-protected so that only the user (owner) can read data from it, not the world at large.
The operating system's own file permissions protect the passwords from other non-administrative users on the same system,
provided they have no direct physical access to the storage media of the home directory, or backups thereof.

Of course, for the truly paranoid, none of these mechanisms meets the test of perfection. So for those folks willing to sacrifice con-
venience for the ultimate in security, Subversion provides various ways of disabling its credentials caching system altogether.

Disabling password caching
When you perform a Subversion operation that requires you to authenticate, by default Subversion tries to cache your authentica-

tion credentials on disk in encrypted form. On some systems, Subversion may be unable to encrypt your authentication data. In
those situations, Subversion will ask whether you want to cache your credentialsto disk in plaintext:

$ svn checkout https://host.exanpl e.com 443/ svn/ private-repo

93

Advanced Topics

ATTENTI ON!' Your password for authentication realm
<ht t ps:// host . exanpl e. com 443> Subver si on Repository

can only be stored to di sk unencrypted! You are advised to configure
your system so that Subversion can store passwords encrypted, if
possi ble. See the docunentation for details.

You can avoid future appearances of this warning by setting the val ue
of the 'store-plaintext-passwords' option to either 'yes' or 'no' in
"/tnpl/servers'.

Store password unencrypted (yes/no)?

If you want the convenience of not having to continually reenter your password for future operations, you can answer yes to this
prompt. If you're concerned about caching your Subversion passwords in plaintext and do not want to be asked about it again and
again, you can disable caching of plaintext passwords either permanently, or on a server-per-server basis.

When considering how to use Subversion's password caching system, you'll want to consult any governing policies
that are in place for your client computer—many companies have strict rules about the ways that their employees' au-
thentication credentials should be stored.

To permanently disable caching of passwords in plaintext, add the line st or e- pl ai nt ext - passwords = no to the
[gl obal] sectionintheser ver s configuration file on the local machine. To disable plaintext password caching for a particular
server, use the same setting in the appropriate group section in the servers configuration file. (See the section called
“Configuration Options’ in Chapter 7, Customizing Your Subversion Experience for details.)

To disable password caching entirely for any single Subversion command-line operation, pass the - - no- aut h- cache option to
that command line. To permanently disable caching entirely, add the line st or e- passwords = no to your local machine's
Subversion configuration file.

Removing cached credentials

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to navigate into the aut h/
area and manually delete the appropriate cache file. Credentials are cached in individual files; if you look inside each file, you will
see keysand values. Thesvn: r eal nst ri ng key describes the particular server realm that the file is associated with:

$ I's ~/.subversion/auth/svn. sinpl e/
5671adf 2865e267db74f 09ba6f 872¢28
3893ed123b39500bca8a0b382839198e
5¢3c22968347b390f 349f f 340196ed39

$ cat ~/.subversion/auth/svn. sinpl e/ 5671adf 2865e267db74f 09ba6f 872c28

K8

user nane
VvV 3

j oe

K8
passwor d
V 4

bl ah

K 15

94

Advanced Topics

svn:real nstring

V 45

<https://svn.domai n.com 443> Joe's repository
END

Once you have located the proper cachefile, just deleteit.

Command-line authentication

All Subversion command-line operations accept the - - user nane and - - passwor d options, which allow you to specify your
username and password, respectively, so that Subversion isn't forced to prompt you for that information. Thisis especially handy if
you need to invoke Subversion from a script and cannot rely on Subversion being able to locate valid cached credentials for you.
These options are also helpful when Subversion has aready cached authentication credentials for you, but you know they aren't the
ones you want it to use. Perhaps several system users share alogin to the system, but each have distinct Subversion identities. Y ou
can omit the - - passwor d option from this pair if you wish Subversion to use only the provided username, but still prompt you
for that username's password.

Authentication wrap-up

One last word about svn's authentication behavior, specifically regarding the - - user nane and - - passwor d options. Many cli-
ent subcommands accept these options, but it is important to understand that using these options does not automatically send cre-
dentials to the server. As discussed earlier, the server “pulls’ credentials from the client when it deems necessary; the client cannot
“push” them at will. If a username and/or password are passed as options, they will be presented to the server only if the server re-
guests them. These options are typically used to authenticate as a different user than Subversion would have chosen by default
(such as your system login name) or when trying to avoid interactive prompting (such as when calling svn from a script).

A common mistake is to misconfigure a server so that it never issues an authentication challenge. When users pass -
/ - user nane and - - passwor d options to the client, they're surprised to see that they're never used; that is, new re-
visions still appear to have been committed anonymously!

Hereisafinal summary that describes how a Subversion client behaves when it receives an authentication challenge.

1. First, the client checks whether the user specified any credentials as command-line options (- - user nane and/or -
- passwor d). If so, the client will try to use those credentials to authenticate against the server.

2. If no command-line credentials were provided, or the provided ones were invalid, the client looks up the server's hostname, port,
and realm in the runtime configuration's aut h/ area, to see whether appropriate credentials are cached there. If so, it attempts
to use those credentials to authenticate.

3. Finally, if the previous mechanisms failed to successfully authenticate the user against the server, the client resorts to interact-
ively prompting the user for valid credentials (unless instructed not to do so viathe - - non-i nt er act i ve option or its cli-
ent-specific equivalents).

If the client successfully authenticates by any of these methods, it will attempt to cache the credentials on disk (unless the user has
disabled this behavior, as mentioned earlier).

Summary

After reading this chapter, you should have a firm grasp on some of Subversion's features that, while perhaps not used every time
you interact with your version control system, are certainly handy to know about. But don't stop here! Read on to the following
chapter, where you'll learn about branches, tags, and merging. Then you'll have nearly full mastery of the Subversion client.

95

Advanced Topics

Though our lawyers won't allow us to promise you anything, this additional knowledge could make you measurably more cool 14

¥No purchase necessary. Certains terms and conditions apply. No guarantee of coolness—implicit or otherwise—exists. Mileage may vary.

96

Chapter 4. Branching and Merging

“#HHHt (It is upon the Trunk that a gentleman works.)”
—Confucius

Branching and merging are fundamental aspects of version control, simple enough to explain conceptually but offering just enough
complexity and nuance to merit their own chapter in this book. Herein, we'll introduce you to the general ideas behind these opera-
tions as well as Subversion's somewhat unique approach to them. If you've not familiarized yourself with Subversion's basic con-
cepts (found in Chapter 1, Fundamental Concepts), we recommmend that you do so before reading this chapter.

What's a Branch?

Suppose it's your job to maintain a document for a division in your company—a handbook of some sort. One day a different divi-
sion asks you for the same handbook, but with afew parts “tweaked” for them, since they do things dlightly differently.

What do you do in this situation? Y ou do the obvious. make a second copy of your document and begin maintaining the two copies
separately. As each department asks you to make small changes, you incorporate them into one copy or the other.

Y ou often want to make the same change to both copies. For example, if you discover a typo in the first copy, it's very likely that
the same typo exists in the second copy. The two documents are almost the same, after all; they differ only in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently of another line, yet till shares a

common history if you look far enough back in time. A branch always begins life as a copy of something, and moves on from
there, generating its own history (see Figure 4.1, “Branches of development”).

Figure 4.1. Branches of development

3rd branch

15t branch

¥

Original line of development

¥

Znd branch

time é}

Subversion has commands to help you maintain parallel branches of your files and directories. It alows you to create branches by
copying your data, and remembers that the copies are related to one ancther. It aso helps you duplicate changes from one branch to
another. Finaly, it can make portions of your working copy reflect different branches so that you can “mix and match” different
lines of development in your daily work.

Using Branches

At this point, you should understand how each commit creates a new state of the filesystem tree (called a“revision”) in the reposit-
ory. If you don't, go back and read about revisionsin the section called “Revisions’.

Let's revisit the example from Chapter 1, Fundamental Concepts. Remember that you and your collaborator, Sally, are sharing a
repository that contains two projects, pai nt and cal c. Notice that in Figure 4.2, “ Starting repository layout”, however, each

97

Branching and Merging

project directory now contains subdirectories named t r unk and br anches. The reason for this will soon become clear.

Figure4.2. Starting repository layout

(]

= alc —_
—
P
[L=
= trunk -
[b=
e
*| branches
= paint I —
—
o W
[
*=| trunk .
[I
o —

*| branches

As before, assume that Sally and you both have working copies of the “calc” project. Specifically, you each have a working copy
of / cal ¢/ t runk. All thefiles for the project are in this subdirectory rather than in/ cal c itself, because your team has decided
that / cal ¢/ t runk iswherethe“main ling” of development is going to take place.

Let's say that you've been given the task of implementing a large software feature. It will take along time to write, and will affect
all the files in the project. The immediate problem is that you don't want to interfere with Sally, who is in the process of fixing
small bugs here and there. She's depending on the fact that the latest version of the project (in/ cal ¢/ t r unk) isaways usable. If
you start committing your changes bit by bit, you'll surely break things for Sally (and other team members as well).

One strategy is to crawl into a hole: you can stop sharing information for a week or two, gutting and reorganizing all the filesin
your private working copy but not committing or updating until you're completely finished with your task. There are a number of
problems with this, though. First, it's not very safe. Should something bad happen to your working copy or computer, you risk los-
ing all your changes. Second, it's not very flexible. Unless you manually replicate your changes across different working copies or
computers, you're stuck trying to make your changes in a single working copy. Similarly, it's difficult to share your work-
in-progress with anyone else. A common software development “best practice” isto alow your peers to review your work as you
go. If nobody sees your intermediate commits, you lose potential feedback and may end up going down the wrong path for weeks
before another person on your team notices. Finally, when you're finished with all your changes, you might find it very difficult to
merge your completed work with the rest of the company's main body of code. Sally (or others) may have made many other
changes in the repository that are difficult to incorporate into your working copy when you eventually run svn update after weeks
of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows you to save your not-
yet-completed work frequently without interfering with others' changes and while still selectively sharing information with your
collaborators. You'll see exactly how this works as we continue.

98

Branching and Merging

Creating a Branch

Creating a branch is very simple—you make a copy of your project tree in the repository using the svn copy command. Since your
project's source code is rooted in the / cal ¢/t runk directory, it's that directory that you'll copy. Where should the new copy
live? Wherever you wish. The repository location in which branches are stashed is left by Subversion as a matter of project policy.
Finally, your branch will need a name to distinguish it from other branches. Once again, the name you choose is unimportant to
Subversion—you can use whatever name works best for you and your team.

Let's assume that your team (like most) has a policy of creating branches in the br anches directory that is a sibling of the
project's trunk (the / cal ¢/ br anches directory in our scenario). Lacking inspiration, you settle on my- cal c- br anch asthe
name you wish to give your branch. This means that you'll create a new directory, / cal ¢/ br anches/ ny- cal c- br anch,
which beginsitslifeasacopy of / cal ¢/ t r unk.

Y ou may already have seen svn copy used to copy one file to another within aworking copy. But it can also be used to do aremote
copy—a copy that immediately results in a newly committed repository revision and for which no working copy is required at all.
Just copy one URL to another:

$ svn copy http://svn.exanpl e.com repos/cal ¢c/trunk \
http://svn. exanpl e. conl r epos/ cal ¢/ branches/ ny- cal c- branch \
-m"Creating a private branch of /calc/trunk."

Commi tted revision 341.

This command causes a near-instantaneous commit in the repository, creating a new directory in revision 341. The new directory is
acopy of / cal ¢/t runk. Thisisshown in Figure 4.3, “ Repository with new copy” Lwhileit'salso possible to create a branch by
using svn copy to duplicate a directory within the working copy, this technique isn't recommended. It can be quite slow, in fact!
Copying adirectory on the client side is a linear-time operation, in that it actually has to duplicate every file and subdirectory with-
in that working copy directory on the local disk. Copying a directory on the server, however, is a constant-time operation, and it's
the way most people create branches.

Figure 4.3. Repository with new copy

subversion does not support copying between different repositories. When using URLs with svn copy or svn move, you can only copy items within the same re-
pository.

99

Branching and Merging

y

—
P S— —
*=| trunk -
[b
s S —_—
*| branches Pt
p.l i
‘_, my-cale ;. e
_branch
R
—F‘ paint | —
—
e
™
* trunk -
T,
o N S
*| branches

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about the repository grow-
ing huge—Subversion doesn't actually duplicate any data. Instead, it creates a new directory entry that points to an existing
tree. If you're an experienced Unix user, you'll recognize this as the same concept behind a hard link. As further changes are
made to files and directories beneath the copied directory, Subversion continues to employ this hard link concept where it
can. It duplicates data only when it is necessary to disambiguate different versions of objects.

This is why you'll often hear Subversion users talk about “cheap copies.” It doesn't matter how large the directory is—it
takes a very tiny, constant amount of time and space to make a copy of it. In fact, this feature is the basis of how commits
work in Subversion: each revision is a “cheap copy” of the previous revision, with a few items lazily changed within. (To
read more about this, visit Subversion's web site and read about the “ bubble up” method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply sees copies of trees.
The main point here is that copies are cheap, both in time and in space. If you create a branch entirely within the repository
(by runningsvn copy URL1 URLZ2), it'saquick, constant-time operation. Make branches as often as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

100

Branching and Merging

$ svn checkout http://svn.exanpl e.cont repos/cal ¢/ branches/ ny-cal c- branch
A ny-cal c-branch/ Makefil e

A ny-cal c-branch/integer.c

A ny-cal c-branch/button.c

ghecked out revision 341.

There's nothing special about this working copy; it simply mirrors a different directory in the repository. When you commit
changes, however, Sally won't see them when she updates, because her working copy is of / cal ¢/ t r unk. (Be sure to read the
section called “Traversing Branches' later in this chapter: the svn switch command is an alternative way of creating a working
copy of abranch.)

Let's pretend that aweek goes by, and the following commits happen:

* Youmakeachangeto/ cal c/ branches/ my- cal c- branch/ but t on. c, which creates revision 342.
* Youmakeachangeto/ cal ¢/ branches/ my- cal c- branch/ i nt eger . ¢, which creates revision 343.

» Sdly makesachangeto/ cal c/ trunk/ i nt eger. c, which creates revision 344.

Now two independent lines of development (shown in Figure 4.4, “The branching of one file's history”) are happening on i n-
t eger. c.

Figure 4.4. The branching of onefile's history

Im,::rfedl Icheﬁ. |
: 5 » my-calc-branch
integer.c r343
| cregled | (Changed changed
98 1303 ;341 344

time é)
Things get interesting when you look at the history of changes made to your copy of i nt eger . c:

$ pwd
/ honme/ user/ my-cal c- branch

$ svn log -v integer.c

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M / cal c/ branches/ ny-cal c-branch/integer.c

* integer.c: frozzled the wazjub.

101

Branching and Merging

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
A/ cal c/ branches/ ny-cal c-branch (from/cal c/trunk: 340)

Creating a private branch of /cal c/trunk.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

rog | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
A /calc/trunk/integer.c

* integer.c: adding this file to the project.

Notice that Subversion istracing the history of your branch'si nt eger . ¢ all the way back through time, even traversing the point
where it was copied. It shows the creation of the branch as an event in the history, because i nt eger . ¢ was implicitly copied
when al of / cal ¢/ t r unk/ was copied. Now look at what happens when Sally runs the same command on her copy of thefile:

$ pwd
/ hone/sal ly/ cal ¢

$ svn log -v integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 COct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

ro8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
A /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Sally sees her own revision 344 change, but not the change you made in revision 343. Asfar as Subversion is concerned, these two

102

Branching and Merging

commits affected different files in different repository locations. However, Subversion does show that the two files share a com-
mon history. Before the branch copy was made in revision 341, the files used to be the same file. That's why you and Sally both see
the changes made in revisions 303 and 98.

The Key Concepts Behind Branching

Y ou should remember two important lessons from this section. First, Subversion has no internal concept of a branch—it knows
only how to make copies. When you copy a directory, the resultant directory isonly a“branch” because you attach that meaning to
it. You may think of the directory differently, or treat it differently, but to Subversion it's just an ordinary directory that happens to
carry some extra historical information.

Second, because of this copy mechanism, Subversion's branches exist as normal filesystem directoriesin the repository. Thisis dif-
ferent from other version control systems, where branches are typicaly defined by adding extra-dimensional “labels’ to collections
of files. The location of your branch directory doesn't matter to Subversion. Most teams follow a convention of putting all branches
into a/ br anches directory, but you're free to invent any policy you wish.

Basic Merging

Now you and Sally are working on parallel branches of the project: you're working on a private branch, and Sally is working on the
trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have working copies of the trunk. Whenever
someone needs to make a long-running change that is likely to disrupt the trunk, a standard procedure is to create a private branch
and commit changes there until all the work is complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very easy to drift too far apart.
Remember that one of the problems with the “crawl in ahole” strategy is that by the time you're finished with your branch, it may
be near-impossible to merge your changes back into the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which changes are worth sharing; Sub-
version gives you the ability to selectively “copy” changes between branches. And when you're completely finished with your
branch, your entire set of branch changes can be copied back into the trunk. In Subversion terminology, the general act of replicat-
ing changes from one branch to another is called merging, and it is performed using various invocations of the svn mer ge subcom-
mand.

In the examples that follow, we're assuming that both your Subversion client and server are running Subversion 1.7 (or later). If
either client or server is older than version 1.5, things are more complicated: the system won't track changes automatically, forcing
you to use painful manual methods to achieve similar results. That is, you'll always need to use the detailed merge syntax to specify
specific ranges of revisions to replicate (see the section called “Merge Syntax: Full Disclosure” later in this chapter), and take spe-
cial care to keep track of what's already been merged and what hasn't. For this reason, we strongly recommend that you make sure
your client and server are at least at version 1.5.

Merge Tracking

Subversion 1.5 introduced the merge tracking feature to Subversion. Prior to this feature keeping track of merges required
cumbersome manual procedures or the use of external tools. Subsequent releases of Subversion introduced many enhance-
ments and bug fixes to merge tracking, which is why we recommend using the most recent versions on both your server and
client. Keep in mind that even if your server isrunning 1.5 or 1.6, you can still use a 1.7 client. Thisis particularly important
as regards merge tracking, because the overwhelming majority of fixesto it are on the client side.

Changesets

Before we proceed further, we should warn you that there's alot of discussion of “changes’ in the pages ahead. A lot of people ex-
perienced with version control systems use the terms “change” and “changeset” interchangeably, and we should clarify what Sub-

103

Branching and Merging

version understands as a changeset.

Everyone seemsto have a dlightly different definition of changeset, or at least a different expectation of what it means for aversion
control system to have one. For our purposes, let's say that a changeset is just a collection of changes with a unique name. The
changes might include textual edits to file contents, modifications to tree structure, or tweaks to metadata. In more common speak,
achangeset isjust a patch with aname you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the repository looked after the Nth commit.
It's also the name of an implicit changeset: if you compare tree N with tree N-1, you can derive the exact patch that was committed.
For thisreason, it's easy to think of revision Nas not just atree, but a changeset as well. If you use an issue tracker to manage bugs,
you can use the revision numbers to refer to particular patches that fix bugs—for example, “this issue was fixed by r9238.” Some-
body canthenrunsvn | og -r 9238 to read about the exact changeset that fixed the bug, and runsvn diff -c¢ 9238 to
see the patch itself. And (as you'll see shortly) Subversion's svn merge command is able to use revision numbers. You can merge
specific changesets from one branch to another by naming them in the merge arguments. passing - ¢ 9238 to svn merge would
merge changeset r9238 into your working copy.

Keeping a Branch in Sync

Continuing with our running example, let's suppose that a week has passed since you started working on your private branch. Y our
new featureisn't finished yet, but at the same time you know that other people on your team continue to make important changesin
the project's / t r unk. It'sin your best interest to replicate those changes to your own branch, just to make sure they mesh well
with your changes. Thisis done by performing a sync merge—a merge operation designed to bring your branch up to date with any
changes made to its ancestral parent branch since your branch was created.

Frequently keeping your branch in sync with the main development line helps prevent “surprise’ conflicts when the
_') time comes for you to fold your changes back into the trunk.

Subversion is aware of the history of your branch and knows when it split away from the trunk. To perform a sync merge, first
make sure your working copy of the branch is “clean”—that it has no local modifications reported by svn status. Then simply run:

$ pwd
/ hone/ user/ my-cal c- branch

$ svn nerge "~/ calc/trunk

--- Merging r345 through r356 into '.":

U button.c

U i nteger.c

--- Recording nergeinfo for nerge of r345 through r356 into '.":
u .

$

This basic syntax—svn ner ge URL—tells Subversion to merge al changes which have not been previously merged from the
URL to the current working directory (which is typicaly the root of your working copy). Notice that we're using the caret (*) syn-
tax? to avoid having to type out the entire/ t r unk URL. Also note the “Recording mergeinfo for merge...” notification. Thistells
you that the merge is updating the svn: ner gei nf o property. Well discuss both this property and these notifications later in this
chapter, in the section called “Mergeinfo and Previews’.

In this book and elsewhere (Subversion mailing lists, articles on merge tracking, etc.) you will frequently come across
_/J the term mergeinfo. Thisis simply shorthand for the svn: mer gei nf o property.

>Thiswas introduced in svn 1.6.

104

Branching and Merging

Keeping a Branch in Sync Without Merge Tracking

You may not always be able to use Subversion's merge tracking feature, perhaps because your server is running Subversion
1.4 or earlier. In such a scenario, you can of course still perform merges, but Subversion will need you to manually do many
of the historical calculations that it automatically does on your behalf when the merge tracking feature is available.

To replicate the most recent trunk changes you need to perform sync merges the “old-fashioned” way—Dby specifying ranges
of revisions you wish to merge.

Let'ssay you branched/ t r unk to/ br anches/ f oo- f eat ur e in revision 400:

$ svn log -v -r 400 ~/ branches/foo-feature

r400 | carol | 2011-11-09 10:51:27 -0500 (Wed, 09 Nov 2011) | 1 line
Changed pat hs:
A /branch/ b2 (from/trunk: 399)

Create branch for the foo feature

When you are ready to syncronize your branch with the ongoing changes from trunk, you specify the starting revision as the
revision of / t r unk which the branch was copied from and the ending revision as HEAD:

$ svn nmerge A/ trunk -r399: HEAD
--- Merging r400 through r556 into '.":

A i ncl ude/ f oo. h
U src/ main. c

A src/foo.c

After any conflicts have been resolved, you can commit the merged changed to your branch. Now, to avoid accidentaly try-
ing to merge these same changes into your branch again in the future, you'll need to record the fact that you've already
merged them. But where should that record be kept? One of the simplest places to record this information is in the log mes-
sage for the commit of the merge:

$ svn ci -m"Sync the foo-feature branch with ~/trunk through r556."
Sendi ng i ncl ude/ foo. h

"I:fansmtting file data .
Comitted revision 557.

The next time you sync / br anches/ f 0o- br anch with / t r unk you repeat this process, except that the starting revision
is the youngest revision that's already been merged in from the trunk. If you've been keeping good records of your mergesin
the commit log messages, you should be able to determine what that youngest revision was by reading the revision logs asso-
ciated with your branch. Once you know your starting revision, you can perform another sync merge:

105

Branching and Merging

$ svn nmerge "/ trunk -r556: HEAD

After running the prior example, your branch working copy now contains new local modifications, and these edits are duplications
of al of the changes that have happened on the trunk since you first created your branch:

$ svn status

M .
M button.c
g/l i nteger.c

At this point, the wise thing to do islook at the changes carefully with svn diff, and then build and test your branch. Notice that the
current working directory (“. ") has aso been modified; svn diff will show that its svn: mer gei nf o property has been either
created or modified. This is important merge-related metadata that you should not touch, since it is needed by future svn merge

commands. (We'll learn more about this metadata later in the chapter.)

After performing the merge, you might also need to resolve some conflicts—just as you do with svn update—or possibly make
some small edits to get things working properly. (Remember, just because there are no syntactic conflicts doesn't mean there aren't
any semantic conflicts!) If you encounter serious problems, you can always abort the local changes by running svn revert

- R (which will undo all local modifications) and starting a long “what's going on?’ discussion with your collaborators. If things
look good, however, you can submit these changes into the repository:

$ svn conmit -m "Merged | atest trunk changes to ny-cal c-branch."”

Sendi ng .
Sendi ng button.c
Sendi ng i nteger.c

Transmitting file data ..
Conmmitted revision 357.

At this point, your private branch is now “in sync” with the trunk, so you can rest easier knowing that as you continue to work in
isolation, you're not drifting too far away from what everyone else is doing.

Why Not Use Patches Instead?

A question may be on your mind, especialy if you're a Unix user: why bother to use svn merge at all? Why not smply use
svn patch or the operating system's patch command to accomplish the same job? For example:

cd ny-cal c-branch
svn diff -r 341: HEAD ~/cal c/trunk > ny-patch-file
svn patch my-patch-file

i nteger.c

ABCHPAP

Branching and Merging

In this particular example, there really isn't much difference. But svn merge has special abilities that surpass the patch pro-
gram. The file format used by patch is quite limited; it's able to tweak file contents only. There's no way to represent
changes to trees, such as the addition, removal, or renaming of files and directories. Nor can the patch program notice
changes to properties. If Sally's change had, say, added a new directory, the output of svn diff wouldn't have mentioned it at
all. svn diff outputs only the limited patch format, so there are some ideas it simply can't express. Even Subversion's own
svn patch subcommand, while more flexible than patch program, still has similar limitations.

The svn merge command, however, can express changes in tree structure and properties by directly applying them to your
working copy. Even more important, this command records the changes that have been duplicated to your branch so that
Subversion is aware of exactly which changes exist in each location (see the section called “Mergeinfo and Previews”). This
isacritical feature that makes branch management usable; without it, users would have to manually keep notes on which sets
of changes have or haven't been merged yet.

Suppose that another week has passed. Y ou've committed more changes to your branch, and your comrades have continued to im-
prove the trunk as well. Once again, you want to replicate the latest trunk changes to your branch and bring yourself in sync. Just
run the same merge command again!

$ svn nerge ~/cal c/trunk

svn: E195020: Cannot nerge into m xed-revision working copy [357:378]; try up\
dating first

$

Well that was unexpected! After making changes to your branch over the past week you now find yourself with a working copy
that contains a mixture of revisions (see the section called “Mixed-revision working copies’). With the release of Subversion 1.7
the svn merge subcommand disables merges into mixed-revision working copies by default. Without going into too much detail,
this is because of limitations in the way merges are tracked by the svn: ner gei nf o property (see the section called “Mergeinfo
and Previews’ for details). These limitations mean that merges into mixed-revision working copies can result in unexpected text
and tree conflicts.® We don't want any needless conflicts, so we update the working copy and then reattempt the merge.

$ svn up
Updating '."':
At revision 380.

$ svn nerge ~/cal c/trunk
--- Merging r357 through r380 into '.":

U i nteger.c

U Makefil e

A READNVE

--- Recording nergeinfo for nerge of r357 through r380 into '.":
u .

$

Subversion knows which trunk changes you previously replicated to your branch, so it carefully replicates only those changes you
don't yet have. And once again, you build, test, and svn commit the local modifications to your branch.

Subtree Merges and Subtree Mergeinfo

3The svn mer ge subcommand option - - al | ow ni xed- r evi si ons alows you to override this prohibition, but you should only do so if you understand the
ramifications and have a good reason for it.

107

Branching and Merging

In most of the examples in this chapter the merge target is the root directory of a branch (see the section called “What's a
Branch?’). While thisis a best practice, you may occasionally need to merge directly to some child of the branch root. This
type of merge is called a subtree merge and the mergeinfo recorded to describe it is called subtree mergeinfo. There is noth-
ing special about subtree merges or subtree mergeinfo. In fact there is really only one important point to keep in mind about
these concepts: the complete record of merges to a branch may not be contained solely in the mergeinfo on the branch root.
You may have to look to any subtree mergeinfo to get a full accounting. Fortunately Subversion does this for you and rarely
will you need to concern yourself with it. A brief example will help explain:

W need to nerge r958 fromtrunk to branches/ proj-X doc/ | NSTALL,
but that revision also affects main.c, which we don't want to nerge:
$ svn log --verbose --quiet -r 958 7/
r958 | bruce | 2011-10-20 13:28:11 -0400 (Thu, 20 Cct 2011)
Changed pat hs:
M /trunk/ doc/ | NSTALL
M /trunk/src/ min.c

No problem we'll do a subtree merge targeting the I NSTALL file
directly, but first take a note of what nergeinfo exists on the
root of the branch:
$ cd branches/ proj - X

$ svn propget svn:nergeinfo --recursive
Properties on '.":
svn: nergei nfo
/trunk: 651- 652

Now we performthe subtree nerge, note that nerge source

and target both point to | NSTALL:

$ svn merge "/ trunk/doc/ | NSTALL doc/| NSTALL -c 958

--- Merging r958 into 'doc/ I NSTALL':

U doc/ | NSTALL

--- Recording nergeinfo for merge of r958 into 'doc/| NSTALL':
G doc/ | NSTALL

Once the nmerge is conplete there is now subtree nmergei nfo on | NSTALL:
$ svn propget svn:nergel nfo --recursive
Properties on '."':
svn: mer gei nfo
/trunk: 651- 652
Properties on 'doc/ | NSTALL':
svn: mer gei nfo
/ trunk/ doc/ | NSTALL: 651- 652, 958

What if we then decide we do want all of r958? Easy, all we need do is
repeat the nerge of that revision, but this tine to the root of the
branch, Subversion notices the subtree nergeinfo on | NSTALL and doesn't
try to merge any changes to it, only the changes to main.c are nerged:
svn nerge ~/ subversion/trunk . -c 958
- Merging r958 into '.":

src/ main.c
- Recording nergeinfo for nmerge of r958 into '.":

AR HEHR

cC!

- Elidi ng nergeinfo from'doc/ | NSTALL':
doc/ | NSTALL

cC'

Y ou might be wondering why | NSTALL in the above example has mergeinfo for r651-652, when we only merged r958. This

108

Branching and Merging

is due to mergeinfo inheritance, which we'll cover in the sidebar Mergeinfo Inheritance. Also note that the subtree mergeinfo
ondoc/ | NSTALL was removed, or “elided”. Thisis called mergeinfo elision and it occurs whenever Subversion detects re-
dundant subtree mergeinfo.

merge. For users with alot of subtree mergeinfo this meant that relatively “simple’ merges (e.g. one which applied a
diff to only a single file) resulted in changes to every subtree with mergeinfo, even those that were not parents of the
effected path(s). This caused some level of confusion and frustration. Subversion 1.7 addresses this problem by only
updating the mergeinfo on subtrees which are parents of the paths modified by the merge (i.e. paths changed, added,
or deleted by application of the difference, see the section called “Merge Syntax: Full Disclosure’). The one excep-
tion to this behavior regards the actual merge target; the merge target's mergeinfo is aways updated to describe the
merge, even if the applied difference made no changes.

oj Prior to Subversion 1.7, merges unconditionally updated all of the subtree mergeinfo under the target to describe the

Reintegrating a Branch

What happens when you finally finish your work, though? Your new feature is done, and you're ready to merge your branch
changes back to the trunk (so your team can enjoy the bounty of your labor). The process is simple. First, bring your branch into
sync with the trunk again, just as you've been doing all along4:

$ svn nmerge ~/cal ¢/trunk

--- Merging r381 through r385 into '.":

] button.c

u READNVE

--- Recording nergeinfo for nmerge of r381 through r385 into '.
u .

$ # build, test,

$ svn commit -m "Final nmerge of trunk changes to ny-cal c-branch."

Sendi ng .
Sendi ng button.c
Sendi ng READVE

Transmitting file data ..
Committed revision 390.

Now, use svn merge with the - - r ei nt egr at e option to replicate your branch changes back into the trunk. Y ou'll need a work-
ing copy of / t r unk. You can get one by doing an svn checkout, dredging up an old trunk working copy from somewhere on your
disk, or using svn switch (see the section called “ Traversing Branches’). Y our trunk working copy cannot have any local edits or
contain a mixture of revisions (see the section called “Mixed-revision working copies’). While these are typically best practices for
merging anyway, they are required when using the - - r ei nt egr at e option.

Once you have a clean working copy of the trunk, you're ready to merge your branch back into it:

$ pwd
/ hone/ user/ cal c-trunk

$ svn update # (make sure the working copy is up to date)

“With Subversion 1.7 you don't absolutely have to do al your sync merges to the root of your branch as we do in this example. If your branch is effectively synced
viaa series of subtree merges then the reintegrate will work, but ask yourself, if the branch is effectively synced, then why are you doing subtree merges? Doing so
isalmost aways needlessly complex.

109

Branching and Merging

Updati ng '
At revision 390.

$ svn nmerge --reintegrate ~/ cal ¢/ branches/ ny-cal c-branch
--- Merging differences between repository URLs into '.":
U button.c
U i nteger.c

Makefil e
-- Recording nergeinfo for nmerge between repository URLs into
u .

$ # build, test, verify,

$ svn comit -m "Merge ny-cal c-branch back into trunk!"

Sendi ng .

Sendi ng button.c

Sendi ng i nteger.c
Sendi ng Makefil e

Transmitting file data ..
Conmmitted revision 391.

Congratulations, your branch-specific changes have now been merged back into the main line of development. Notice our use of
the - - r ei nt egr at e option this time around. The option is critical for reintegrating changes from a branch back into its original
line of development—don't forget it! It's needed because this sort of “merge back” is a different sort of work than what you've done
up until now. Previously, we were asking svn merge to grab the “next set” of changes from one line of development (the trunk)
and duplicate them to another (your branch). Thisisfairly straightforward, and each time Subversion knows how to pick up where
it left off. In our prior examples, you can see that first it merges the ranges 345:356 from trunk to branch; later on, it continues by
merging the next contiguously available range, 356:380. When doing the final sync, it merges the range 380:385.

When merging your branch back to the trunk, however, the underlying mathematics are quite different. Y our feature branch is now
a mishmash of both duplicated trunk changes and private branch changes, so there's no simple contiguous range of revisions to
copy over. By specifying the - - r ei nt egr at e option, you're asking Subversion to carefully replicate only those changes unique
to your branch. (And in fact, it does this by comparing the latest trunk tree with the latest branch tree: the resulting differenceis ex-
actly your branch changes!)

Keep in mind that the - - r ei nt egr at e option is quite specialized in contrast to the more general nature of most Subversion sub-
command options. It supports the use case descri bed above, but haslittle appl icability outside of that. Because of this narrow focus,
in addition to requiring an up-to-date working copy with no mixed-revisions, it will not function in combination with most of the
other svn merge options. You'll get an error if you use any non-global options but these: - -accept, --dry-run, -

-di ff3-cnd, - - ext ensi ons, or--qui et.

Now that your private branch is merged to trunk, you may wish to remove it from the repository:

$ svn del ete ~/ cal c/branches/ ny-cal c-branch \
-m "Renmove ny-cal c-branch, reintegrated with trunk in r391."
Committed revision 392.

But wait! Isn't the history of that branch valuable? What if somebody wants to audit the evolution of your feature someday and
look at all of your branch changes? No need to worry. Remember that even though your branch is no longer visible in the /
br anches directory, its existence is still an immutable part of the repository's history. A simple svn log command on the /
br anches URL will show the entire history of your branch. Y our branch can even be resurrected at some point, should you de-

5Reintegrate merges are allowed if the target is a shallow checkout (see the section called “Sparse Directories’) but any paths affected by the diff which are
“missing” due to the sparse working copy will be skipped, probably not what you intended!

110

Branching and Merging

sire (see the section called “ Resurrecting Deleted I1tems”).

Oncea- - r ei nt egr at e merge is done from branch to trunk, the branch is no longer usable for further work. It's not able to cor-
rectly absorb new trunk changes, nor can it be properly reintegrated to trunk again. For this reason, if you want to keep working on
your feature branch, we recommend destroying it and then re-creating it from the trunk:

$ svn delete http://svn. exanpl e. com repos/ cal c/ branches/ ny-cal c- branch \
-m "Remove ny-cal c-branch, reintegrated with trunk in r391."
Conmitted revision 392.

$ svn copy http://svn.exanpl e.com repos/cal ¢c/trunk \
http://svn. exanpl e. conif repos/ cal ¢/ branches/ ny- cal c- branch
-m "Recreate my-cal c-branch from trunk@EAD. "
Conmmitted revision 393.

There is another way of making the branch usable again after reintegration, without deleting the branch. See the section called
“Keeping a Reintegrated Branch Alive’.

Mergeinfo and Previews

The basic mechanism Subversion uses to track changesets—that is, which changes have been merged to which branches—is by re-
cording data in versioned properties. Specifically, merge data is tracked in the svn: ner gei nf o property attached to files and
directories. (If you're not familiar with Subversion properties, see the section called “ Properties’.)

Y ou can examine the property, just like any other:

cd ny-cal c-branch
svn propget svn:mergeinfo .
trunk: 341- 390

BT AP

While it is possible to modify svn: ner gei nf o just as you might any other versioned property, we strongly dis-
courage doing so unless you really know what you're doing.

or svn proplist --recursive when dealing with large amounts of subtree mergeinfo, see Subtree Merges and Subtree
Mergeinfo . The formatted output produced by the - - ver bose option with either of these subcommands is often
very helpful in these cases.

D The amount of svn: mer gei nf 0 on asingle path can get quite large, as can the output of asvn propget --recursive

The svn: ner gei nf o property is automatically maintained by Subversion whenever you run svn merge. Its value indicates
which changes made to a given path have been replicated into the directory in question. In our previous example, the path which is
the source of the merged changes is /trunk and the directory which has received the changes is /
br anches/ ny- cal c- br anch. Earlier versions of Subversion maintained the svn: mer gei nf o property silently. You could
still detect the changes, after a merge completed, with the svn diff or svn status subcommands, but the merge itself gave no indica-
tion when it changed the svn: mer gei nf o property. Thisisno longer true in Subversion 1.7, which has several new notifications
to alert you when a merge updates the svn: nmer gei nf o property. These notifications al begin with “--- Recording mergeinfo
for” and appear at the end of the merge. Unlike other merge notifications, these don't describe the application of a difference to a
working copy (see the section called “Merge Syntax: Full Disclosure”), but instead describe "housekeeping” changes made to keep
track of what was merged.

111

Branching and Merging

Subversion also provides a subcommand, svn mergeinfo, which is helpful in seeing not only which changesets a directory has ab-
sorbed, but also which changesets it's still eligible to receive. This gives a sort of preview of which changes a subsequent svn
mer ge operation would replicate to your branch.

$ cd ny-cal c-branch

Wi ch changes have al ready been nmerged fromtrunk to branch?
$ svn nergeinfo ~/ cal c/trunk

r341

r 342

r343

r 388

r 389

r390

Whi ch changes are still eligible to merge fromtrunk to branch?
$ svn nmergeinfo ~/ calc/trunk --showrevs eligible

r391

r392

r393

r 394

r395

$

The svn mergeinfo command requires a “source” URL (where the changes come from), and takes an optional “target” URL
(where the changes merge to). If no target URL is given, it assumes that the current working directory is the target. In the prior ex-
ample, because we're querying our branch working copy, the command assumes we're interested in receiving changes to /
branches/ mybr anch from the specified trunk URL.

Mergeinfo Inheritance

When a path hasthe svn: ner gei nf o property set on it we say it has explicit mergeinfo. This explicit mergeinfo describes
not only what changes were merged into that particular directory, but also all the children of that directory (because those
children inherit the mergeinfo of their parent path). For example:

What explicit nmergeinfo exists on a branch?
$ svn propget svn:nergei nfo A/ branches/proj-X --recursive
/trunk: 651- 652

What children does proj-X have?

$ svn list --recursive ~/ branches/proj-X
doc/

doc/ | NSTALL

READVE

src/min.c

Ask what revs were nerged to a file with no explicit nergeinfo
$ svn nergeinfo A/ trunk/src/ main.c ~ branches/proj-X src/min.c
651
652

Notice from our first subcommand that only the root of / br anches/ pr oj - X has any explicit mergeinfo. However, when

112

Branching and Merging

we use svh mer geinfo to ask what was merged to / br anches/ pr oj - X/ sr ¢/ mai n. c it reports that the two revisions
described in the explicit mergeinfo on /branches/proj-X were merged. This is because /
branches/ proj - X/ src/ mai n. ¢, having no explicit mergeinfo of its own, inherits the mergeinfo from its nearest par-
ent with explicit mergeinfo, / br anches/ pr oj - X.

There are two cases in which mergeinfo is not inherited. First, if a path has explicit mergeinfo, then it never inherits
mergeinfo. Another way to think of thisis that explicit mergeinfo is always a complete record of the merges to a given path,
once it exists it overrides any mergeinfo that path might otherwise inherit. The second way is when dealing with non-
inheritable mergeinfo, a special type of explicit mergeinfo that applies only to the directory on which the svn: ner gei nf o
property is set (and it's only directories, non-inheritable mergeinfo is never set on files). For example:

The '*' decorator indicates non-inheritable mergeinfo
$ svn propget svn:nergei nfo ~/ branches/ proj-X
/ trunk: 651- 652, 758*

Revision 758 is non-inheritable, but still applies to the path it is
set on. Here the '*' decorator signals that r758 is only partially
merged fromtrunk.

$ svn nergei nfo A/ trunk ~/branches/proj-X

651

652

758*

Revision 758 is not reported as nerged because it is non-inheritable
and applies only to ~/trunk

$ svn nergeinfo A/ trunk/src/min.c ~ branches/proj-X src/min.c

651

652

Y ou might never have to think about mergeinfo inheritance or encounter non-inheritable mergeinfo in your own repository.
A discussion of the full ramifications of mergeinfo inheritance are beyond the scope of this book. If you have more questions
check out some of the references mentioned in the section called “ The Final Word on Merge Tracking”

With the release of Subversion 1.7, the svn mergeinfo subcommand can also account for subtree mergeinfo and non-inheritable
mergeinfo. It accounts for subtree mergeinfo by use of the - - r ecur si ve or - - dept h options, while non-inheritable mergeinfo
is considered by default.

Let's say we have a branch with both subtree and non-inheritable mergeinfo:

$ svn propget svn:nergeinfo --recursive -v
Non-i nheritable nergeinfo
Properties on '.":
svn: mer gei nfo
/trunk: 651- 652, 758*
Subtree mergeinfo
Properties on 'doc/ | NSTALL':
svn: nergei nfo
/trunk/ doc/ | NSTALL: 651- 652, 958, 1060

From the above mergeinfo we see that r758 has only been merged into the root of the branch, but not any of the root's children. We
also see that both r958 and r1060 have been merged only to the doc/ | NSTALL file. When we use svn mergeinfo with the -
-recursi ve option to see what has been merged from ~/ t r unk to this branch, we see two revisions are flagged with the *

113

Branching and Merging

marker:

$ svn nergeinfo --showrevs=nerged ~/trunk . --recursive
651
652
758*
958*
1060

The * indicates revisions that are only partially merged to the target in question (the meaning is the same if we are checking for
eligible revisions). What this means in this example is that if we tried to merge r758 or r958 from ~/ t r unk then more changes
would result. Likewise, because r1060 is not flagged with a *, we know that it only affects doc/ | NSTALL and that trying to
merge it would have no result.®

Another way to get a more precise preview of amerge operationisto usethe- - dr y- r un option:

$ svn merge N calc/trunk --dry-run
--- Merging r391 through r395 into 'branch':
U i nteger.c

$ svn status
nothing printed, working copy is still unchanged.

The - - dr y- r un option doesn't actually apply any local changes to the working copy. It shows only status codes that would be
printed in areal merge. It's useful for getting a“high-level” preview of the potential merge, for those times when running svn diff
givestoo much detail.

-dept h=enpty /path/to/ merge/target toseeonly the changes to the immediate target of your merge. If
your merge target was a directory, only property differences are displayed. Thisis a handy way to see the changes to
the svn: mer gei nf o property recorded by the merge operation, which will remind you about what you've just
merged.

@) After performing a merge operation, but before committing the results of the merge, you can use svn di ff -

Of course, the best way to preview a merge operation is to just do it! Remember, running svn mergeisn't an inherently risky thing
(unless you've made local modifications to your working copy—but we already stressed that you shouldn't merge into such an en-
vironment). If you don't like the results of the merge, simply runsvn revert . - Rto revert the changes from your working
copy and retry the command with different options. The mergeisn't final until you actually svn commit the results.

Undoing Changes

An extremely common use for svn mergeisto roll back a change that has aready been committed. Suppose you're working away
happily on a working copy of / cal ¢/t r unk, and you discover that the change made way back in revision 303, which changed
i nt eger. c, is completely wrong. It never should have been committed. Y ou can use svn merge to “undo” the change in your
working copy, and then commit the local modification to the repository. All you need to do is to specify areverse difference. (You
can do this by specifying - - r evi si on 303: 302, or by an equivalent - - change - 303.)

8 This is often termed an “inoperative” merge. Though in this example the merge of r1060 would do something: It would update the mergeinfo on the root of the
branch, but it would be inoperative in the sense that no diff would be applied.

114

Branching and Merging

$ svn nerge -c -303 ~/calc/trunk

--- Reverse-nerging r303 into 'integer.c':

] i nteger.c

--- Recording nergeinfo for reverse nmerge of r303 into "integer.c':
U A-branch

$ svn status
M .
M i nteger.c

$ svn diff

#'verify that the change is renoved

$ svn conmmit -m "Undoi ng change comritted in r303."
Sendi ng i nteger.c

Transmitting file data .

Conmitted revision 350.

As we mentioned earlier, one way to think about a repository revision is as a specific changeset. By using the - r option, you can
ask svn merge to apply a changeset, or a whole range of changesets, to your working copy. In our case of undoing a change, we're
asking svn merge to apply changeset r303 to our working copy backward.

Keep in mind that rolling back a change like thisis just like any other svn mer ge operation, so you should use svn status and svn
diff to confirm that your work is in the state you want it to be in, and then use svn commit to send the final version to the reposit-
ory. After committing, this particular changeset is no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in revision 303. If somebody
checks out aversion of the cal ¢ project between revisions 303 and 349, shelll till see the bad change, right?

Y es, that's true. When we talk about “removing” a change, we're really talking about removing it from the HEAD revision. The ori-
gina change till exists in the repository's history. For most situations, this is good enough. Most people are only interested in
tracking the HEAD of a project anyway. There are special cases, however, where you really might want to destroy all evidence of
the commit. (Perhaps somebody accidentally committed a confidential document.) This isn't so easy, it turns out, because Subver-
sion was deliberately designed to never lose information. Revisions are immutable trees that build upon one another. Removing a
revision from history would cause a domino effect, creating chaosin al subsequent revisions and possibly invalidating all working
copies.

Resurrecting Deleted Items

The great thing about version control systems is that information is never lost. Even when you delete a file or directory, it may be
gone from the HEAD revision, but the object still exists in earlier revisions. One of the most common questions new users ask is,
“How do | get my old file or directory back?’

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you can think of every object in
the repository as existing in a sort of two-dimensional coordinate system. The first coordinate is a particular revision tree, and the
second coordinate is a path within that tree. So every version of your file or directory is defined by a specific coordinate pair.
(Remember the “peg revision” syntax—foo.c@224—mentioned back in the section called “Peg and Operative Revisions’.)

First, you might need to use svn log to discover the exact coordinate pair you wish to resurrect. A good strategy istorunsvn | og
- -ver bose in adirectory that used to contain your deleted item. The - - ver bose (- v) option shows alist of al changed items
in each revision; all you need to do is find the revision in which you deleted the file or directory. Y ou can do this visualy, or by us-
ing another tool to examine the log output (via grep, or perhaps via an incremental search in an editor).

"The Subversion project has plans, however, to someday implement a command that would accomplish the task of permanently deleting information. In the mean-
time, see the section called “svndumpfilter” for a possible workaround.

115

Branching and Merging

$ cd parent-dir
$ svn log -v

r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed pat hs:

D /calc/trunk/real.c

M /calc/trunk/integer.c

Added fast fourier transformfunctions to integer.c.
Renmoved real.c because code now i n double.c.

In the example, we're assuming that you're looking for a deleted file r eal . ¢. By looking through the logs of a parent directory,
you've spotted that this file was deleted in revision 808. Therefore, the last version of the file to exist was in the revision right be-
fore that. Conclusion: you want to resurrect the path/ cal ¢/ t runk/ r eal . ¢ from revision 807.

That was the hard part—the research. Now that you know what you want to restore, you have two different choices.

One option is to use svn merge to apply revision 808 “in reverse.” (We already discussed how to undo changes in the section
called “Undoing Changes’.) This would have the effect of re-adding r eal . ¢ as alocal modification. The file would be scheduled
for addition, and after acommit, the file would again exist in HEAD.

In this particular example, however, this is probably not the best strategy. Reverse-applying revision 808 would not only schedule
r eal . c for addition, but the log message indicates that it would also undo certain changesto i nt eger . ¢, which you don't want.
Certainly, you could reverse-merge revision 808 and then svn revert the loca modifications to i nt eger . c, but this technique
doesn't scale well. What if 90 files were changed in revision 808?

A second, more targeted strategy is not to use svn merge at all, but rather to use the svn copy command. Simply copy the exact re-
vision and path “coordinate pair” from the repository to your working copy:

$ svn copy ~calc/trunk/real.c@07 ./real.c

$ svn status
A + real .c

$ svn conmit -m"Resurrected real.c fromrevision 807, /calc/trunk/real.c."
Addi ng real.c

Transnmitting file data .

Conmitted revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but scheduled for addition “with his-
tory.” Subversion remembers where it was copied from. In the future, running svn log on this file will traverse back through the
file's resurrection and through all the history it had prior to revision 807. In other words, thisnew r eal . ¢ isn't realy new; it'sa
direct descendant of the original, deleted file. Thisis usually considered a good and useful thing. If, however, you wanted to resur-
rect the file without maintaining a historical link to the old file, this technique works just as well:

$ svn cat M calc/trunk/real.c@07 > ./real.c

$ svn add real.c
A real .c

116

Branching and Merging

$ svn commit -m"Re-created real.c fromrevision 807."
Addi ng real.c

Transmitting file data .

Commi tted revision 1390.

Although our example shows us resurrecting a file, note that these same techniques work just as well for resurrecting deleted dir-
ectories. Also note that aresurrection doesn't have to happen in your working copy—it can happen entirely in the repository:

$ svn copy "/ calc/trunk/real.c@07 ~/ calc/trunk/ \
-m"Resurrect real.c fromrevision 807."
Conmitted revision 1390.

$ svn update

Updating '.":

A real.c

Updated to revision 1390.

Advanced Merging

Here ends the automated magic. Sooner or later, once you get the hang of branching and merging, you're going to have to ask Sub-
version to merge specific changes from one place to another. To do this, you're going to have to start passing more complicated ar-
guments to svn merge. The next section describes the fully expanded syntax of the command and discusses a number of common
scenarios that require it.

Cherrypicking

Just as the term “changeset” is often used in version control systems, so is the term cherrypicking. This word refers to the act of
choosing one specific changeset from a branch and replicating it to another. Cherrypicking may aso refer to the act of duplicating
aparticular set of (not necessarily contiguous!) changesets from one branch to another. Thisisin contrast to more typical merging
scenarios, where the “next” contiguous range of revisions is duplicated automatically.

Why would people want to replicate just a single change? It comes up more often than you'd think. For example, let's go back in
time and imagine that you haven't yet merged your private feature branch back to the trunk. At the water cooler, you get word that
Sally made an interesting change to i nt eger . ¢ on the trunk. Looking over the history of commits to the trunk, you see that in
revision 355 she fixed a critical bug that directly impacts the feature you're working on. Y ou might not be ready to merge al the
trunk changes to your branch just yet, but you certainly need that particular bug fix in order to continue your work.

$ svn diff -c 355 ~/calc/trunk

I ndex: integer.c

--- integer.c (revision 354)
+++ integer.c (revision 355)
@-147,7 +147,7 @@

case 6: sprintf(info->operating system "HPFS (OS/2 or NT)"); break;
case 7 sprintf(info->operating system "Macintosh"); break;
case 8: sprintf(info->operating_system "Z-Systent); break;
- case 9: sprintf(info->operating system "CP/MV);
+ case 9: sprintf(info->operating_system "CP/M); break;
case 10 sprintf(info->operating_system "TOPS-20"); break;
case 11 sprintf(info->operating_system "NTFS (Wndows NT)"); break;

117

Branching and Merging

case 12: sprintf(info->operating system "QDOS"); break
Just as you used svn diff in the prior example to examine revision 355, you can pass the same option to svn mer ge:

$ svn nerge -c¢ 355 ~/calc/trunk

--- Merging r355 into '.":

U i nteger.c

--- Recording nergeinfo for nmerge of r355 into '.
u .

$ svn status
M i nteger.c

Y ou can now go through the usual testing procedures before committing this change to your branch. After the commit, Subversion
marks r355 as having been merged to the branch so that future “magic’ merges that synchronize your branch with the trunk know
to skip over r355. (Merging the same change to the same branch almost always resultsin a conflict!)

$ cd ny-cal c-branch

$ svn propget svn:mergeinfo .
[trunk: 341- 349, 355

Notice that r355 isn't listed as "eligible" to merge, because
it's already been merged.

$ svn nmergeinfo ~/ calc/trunk --showrevs eligible
r 350

r351

r352

r 353

r 354

r 356

r 357

r 358

r 359

r 360

$ svn nerge "/ cal c/trunk
--- Merging r350 through r354 into '.":
U

U integer.c
Makefil e
- Merging r356 through r360 into '.":

U integer.c
U button.c
- Recording nergeinfo for merge of r350 through r360 into '.":

This use case of replicating (or backporting) bug fixes from one branch to ancther is perhaps the most popular reason for cherry-
picking changes; it comes up al the time, for example, when ateam is maintaining a “release branch” of software. (We discuss this
pattern in the section called “ Release Branches’.)

118

Branching and Merging

Did you notice how, in the last example, the merge invocation merged two distinct ranges? The svn mer ge command
applied two independent patches to your working copy to skip over changeset 355, which your branch aready con-
tained. There's nothing inherently wrong with this, except that it has the potential to make conflict resolution trickier.
If the first range of changes creates conflicts, you must resolve them interactively for the merge process to continue
and apply the second range of changes. If you postpone a conflict from the first wave of changes, the whole merge
command will bail out with an error message.

A word of warning: while svn diff and svn merge are very similar in concept, they do have different syntax in many cases. Be sure
to read about them in Chapter 9, Subversion Complete Reference for details, or ask svn help. For example, svn merge requires a
working copy path as atarget, that is, a place where it should apply the generated patch. If the target isn't specified, it assumes you
aretrying to perform one of the following common operations:

* You want to merge directory changes into your current working directory.
» You want to merge the changes in a specific file into afile by the same name that exists in your current working directory.
If you are merging a directory and haven't specified a target path, svn mer ge assumes the first case and tries to apply the changes

into your current directory. If you are merging afile, and that file (or a file by the same name) exists in your current working dir-
ectory, svn mer ge assumes the second case and tries to apply the changesto alocal file with the same name.

Merge Syntax: Full Disclosure

You've now seen some examples of the svn merge command, and you're about to see several more. If you're feeling confused
about exactly how merging works, you're not alone. Many users (especially those new to version control) are initially perplexed
about the proper syntax of the command and about how and when the feature should be used. But fear not, this command is actu-
ally much simpler than you think! There's avery easy technique for understanding exactly how svn mer ge behaves.

The main source of confusion is the name of the command. The term “merge” somehow denotes that branches are combined to-
gether, or that some sort of mysterious blending of data is going on. That's not the case. A better name for the command might
have been svn diff-and-apply, because that's al that happens: two repository trees are compared, and the differences are applied to
awaorking copy.

If you're using svn merge to do basic copying of changes between branches, it will generally do the right thing automatically. For
example, acommand such as the following:

$ svn nerge ”/cal c/ branches/ sonme- branch

will attempt to duplicate any changes made on somne- br anch into your current working directory, which is presumably a work-
ing copy that shares some historical connection to the branch. The command is smart enough to only duplicate changes that your
working copy doesn't yet have. If you repeat this command once a week, it will only duplicate the “newest” branch changes that
happened since you last merged.
If you choose to use the svn merge command in all its full glory by giving it specific revision ranges to duplicate, the command
takes three main arguments:
1. Aninitial repository tree (often called the left side of the comparison)
2. A final repository tree (often called the right side of the comparison)
Bl TG SoR R AceRt the gl Terences an i asel fhanges (Often called the lr ot of the e e) o,

119

Branching and Merging

Once these three arguments are specified, then the two trees are compared and the differences applied to the target working copy as
local modifications. When the command is done, the results are no different than if you had hand-edited the files or run various svn
add or svn delete commands yourself. If you like the results, you can commit them. If you don't like the results, you can ssimply
svn revert al of the changes.

The syntax of svn merge alows you to specify the three necessary arguments rather flexibly. Here are some examples:

$ svn nmerge http://svn. exanpl e. conl repos/ branch1@50 \
http://svn. exanpl e. conf repos/ branch2@12 \
my-wor ki ng- copy

$ svn nerge -r 100: 200 http://svn.exanpl e.com repos/trunk ny-working-copy
$ svn merge -r 100: 200 http://svn. exanpl e. com repos/trunk

The first syntax lays out all three arguments explicitly, naming each tree in the form URL@REV and naming the working copy tar-
get. The second syntax is used as a shorthand for situations when you're comparing two different revisions of the same URL. The
last syntax shows how the working copy argument is optional; if omitted, it defaults to the current directory.

While the first example shows the “full” syntax of svn merge, useit very carefully; it can result in merges which do not record any
svn: mer gei nf o metadata at all. The next section talks a bit more about this.

Merges Without Mergeinfo

Subversion tries to generate merge metadata whenever it can, to make future invocations of svn merge smarter. There are still situ-
ations, however, wheresvn: mer gei nf o datais not created or changed. Remember to be a bit wary of these scenarios:

Merging unrelated sources
If you ask svnh merge to compare two URLS that aren't related to each other, a patch is till generated and applied to your
working copy, but no merging metadata is created. There's no common history between the two sources, and future “smart”
merges depend on that common history.

Merging from foreign repositories
While it's possble to run a command such as svn nmer ge -r 100: 200 ht -
tp://svn. foreignproject.comrepos/trunk, theresultant patch also lacks any historical merge metadata. At the
time of thiswriting, Subversion has no way of representing different repository URLswithin thesvn: mer gei nf o property.

Using - - i ghor e- ancestry
If this option is passed to svn merge, it causes the merging logic to mindlessly generate differences the same way that svn diff
does, ignoring any historical relationships. We discuss this later in this chapter in the section called “Noticing or Ignoring An-
cestry”.

Applying reverse merges from atarget's natural history
Earlier in this chapter (the section called “Undoing Changes’) we discussed how to use svn merge to apply a “reverse patch”
as away of rolling back changes. If this technique is used to undo a change to an object's persona history (e.g., commit r5 to
the trunk, 5hen immediately roll back r5 using svh nerge . -c -5), this sort of merge doesn't affect the recorded
mergeinfo.

Natural History and Implicit Mergeinfo

glnterestingly, after rolling back arevision like this, we wouldn't be able to reapply the revision using svn nmerge . -c 5, since the mergeinfo would already
list r5 as being applied. We would have to usethe - - i gnor e- ancest r y option to make the merge command ignore the existing mergeinfo!

120

Branching and Merging

As we mentioned earlier when discussing Mergeinfo Inheritance, a path that has the svn: ner gei nf o property set onitis
said to have “explicit” mergeinfo. Yes, thisimplies a path can have “implicit” mergeinfo, too! Implicit mergeinfo, or natural
history, is simply a path's own history (see the section called “ Examining History”) interpreted as mergeinfo. While implicit
mergeinfo is largely an implementation detail, it can be a useful abstraction for understanding merge tracking behavior.

Let's say you created / t r unk in revision 100 and then later, in revision 201, created */ br anches/ f eat ur e- br anch
as acopy of A/t runk@O00. The natural history of ~/ br anches/ f eat ur e- br anch contains all the repository paths
and revision ranges through which the history of the new branch has ever passed:

/trunk:100-200
[branches/feature-branch:201

With each new revision added to the repository, the natural history—and thus, implicit mergeinfo—of the branch continues
to expand to include those revisions until the day the branch is deleted. Here's what the implicit mergeinfo of our branch
would look like when the HEAD revision of the repository had grown to 234:

[trunk:100-200
[branches/feature-branch:201-234

Implicit mergeinfo does not actually show up in the svn: mer gei nf o property, but Subversion acts as if it does. Thisis
why if you check out ~/ br anches/ f eat ur e- br anch and then runsvn merge ~/trunk -c 58 in the resulting
working copy, nothing happens. Subversion knows that the changes committed to ~/ t r unk in revision 58 are aready
present in the target's natural history, so there's no need to try to merge them again. After al, avoiding repeated merges of
changes isthe primary goal of Subversion's merge tracking feature!

More on Merge Conflicts

Just like the svn update command, svn merge applies changes to your working copy. And therefore it's also capable of creating

conflicts. The conflicts produced by svn merge, however, are sometimes different, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a particular revision, the changes sent
by the server always apply “cleanly” to your working copy. The server produces the delta by comparing two trees: a virtual snap-
shot of your working copy, and the revision tree you're interested in. Because the left hand side of the comparison is exactly equal

to what you aready have, the deltais guaranteed to correctly convert your working copy into the right hand tree.

But svn merge has no such guarantees and can be much more chaotic: the advanced user can ask the server to compare any two
trees at al, even ones that are unrelated to the working copy! This means there's large potential for human error. Users will some-
times compare the wrong two trees, creating a delta that doesn't apply cleanly. The svn mer ge subcommand does its best to apply
as much of the delta as possible, but some parts may be impossible. A common sign that you merged the wrong delta is unexpected

tree conflicts:

$ svn nerge -r 1288:1351 http://svn. exanpl e. conl myr epos/ branch
--- Mergi ng r1289 through r1351 into '.":

C bar.

C foo. c

C docs
-- Recording nergeinfo for nerge of r1289 through r1351 into '.'

121

Branching and Merging

u .
Sumary of conflicts:
Tree conflicts: 3

$ svn st
! C bar.c

> | ocal missing, incomng edit upon nerge
! C foo.c

> | ocal missing, inconming edit upon nerge
! C docs

> | ocal delete, inconming edit upon nerge

In the previous example, it might be the case that bar . ¢, f 00. ¢, and docs all exist in both snapshots of the branch being com-
pared. The resultant delta wants to change the contents of the corresponding paths in your working copy, but those paths don't exist
in the working copy. Whatever the case, the preponderance of tree conflicts most likely means that the user compared the wrong
two trees; it's a classic sign of user error. When this happens, it's easy to recursively revert al the changes created by the merge
(svn revert . --recursive), deeteany unversioned files or directories |left behind after the revert, and rerun svn merge
with the correct arguments.

Also keep in mind that a merge into aworking copy with no local edits can still produce text conflicts.

$ svn nerge -c 1701 http://svn. exanpl e.com nmyrepos/ branchX --accept postpone
--- Merging r1701 into '.":
C gl ub.c
C sputter.c
--- Recording nergeinfo for nerge of r1701 into '.":

u .
Summary of conflicts:

Text conflicts: 2

C.\SVN\ src-branch-1. 7. x>svn st
M .
? gl ub.c.nerge-left.r1700
? gl ub. c. nerge-right.r1701
C gl ub. c
? gl ub. c. wor ki ng
? Sputter.c.merge-left.r1700
? Sputter.c. merge-right.r1701
C sputter.c
? sputter.c.working
Summary of conflicts:
Text conflicts: 2

How can a conflict possibly happen? Again, because the user can request svn mer ge to define and apply any old delta to the work-
ing copy, that delta may contain textual changes that don't cleanly apply to a working file, even if the file has no local modifica-
tions.

Another small difference between svn update and svn mer ge is the names of the full-text files created when a conflict happens. In
the section called “Resolve Any Conflicts’, we saw that an update produces files named fil enane. m ne, file-
name. r OLDREV, and f i | ename. r NEWREV. When svn mer ge produces a conflict, though, it creates three filesnamed fi | e-
name. wor ki ng, fil enane. merge-| eft.rOLDREV, andfil enane. mer ge-ri ght. r NEWREV. In this case, the terms
“merge-left” and “merge-right” are describing which side of the double-tree comparison the file came from, “rOLDREV” describes
the revision of the left side, and “rNEWREV” the revision of the right side. In any case, these differing names help you distinguish
between conflicts that happened as aresult of an update and ones that happened as a result of amerge.

122

Branching and Merging

Blocking Changes

Sometimes there's a particular changeset that you don't want automatically merged. For example, perhaps your team's policy is to
do new development work on / t r unk, but is more conservative about backporting changes to a stable branch you use for releas-
ing to the public. On one extreme, you can manually cherrypick single changesets from the trunk to the branch—just the changes
that are stable enough to pass muster. Maybe things aren't quite that strict, though; perhaps most of the time you just let svn merge
automatically merge most changes from trunk to branch. In this case, you want a way to mask a few specific changes out, that is,
prevent them from ever being automatically merged.

Through Subversion 1.7, the only way to block a changeset is to make the system believe that the change has already been merged.
To do this, invoke the merge subcommand with the - - r ecor d- onl y option:

$ cd ny-cal c-branch

$ svn propget svn:nergeinfo .
/trunk: 1680- 3305

Let's nake the netadata |list r3328 as al ready nerged.
$ svn nerge -c 3328 --record-only ~/cal c/trunk
--- Recording nergeinfo for merge of r3328 into '.
u .

$ svn status
M

$ svn propget svn:mergeinfo .
/ trunk: 1680- 3305, 3328

$ svn commit -m "Block r3328 frombeing nerged to the branch."

Beginning with Subversion 1.7, - - r ecor d- onl y merges are transitive. This means that, in addition to recording mergeinfo de-
scribing the blocked revision(s), any svn: mer gei nf o property differences in the merge source are also applied. For example,
let's say we want to block the 'frazzle' feature from ever being merged from ~/ t r unk to our ~/ br anches/ pr oj - X branch. We
know that all the frazzle work was done on its own branch, which was reintegrated to t r unk in revision 1055:

$ svn log -v M trunk -r 1055

r1055 | francesca | 2011-09-22 07:40: 06 -0400 (Thu, 22 Sep 2011) | 3 lines
Changed pat hs:

M /trunk

M /trunk/src/frazzle.c

Reintegrate the frazzle-feature-branch to trunk.
Because revision 1055 was a reintegrate merge we know that mergeinfo was recorded describing the merge:

$ svn diff ~trunk -c 1055 --depth enpty
I ndex:

R (revision 1054)
F++ (revision 1055)

123

Branching and Merging

Property changes on:

Modi fi ed: svn: nergei nfo
Merged /branches/frazzl e-feature-branch:r997-1003

Now simply blocking merges of revision 1055 from ~/ t r unk isn't foolproof since someone could merge r996:1003 directly from
Al branches/ frazzl e-f eat ur e- br anch. Fortunately the transitive nature of - - r ecor d- onl y mergesin Subversion 1.7
prevents this; the - - r ecor d- onl y merge applies the svn: ner gei nf o diff from revision 1055, thus blocking merges directly
from the frazzle branch and as it has aways done prior to Subversion 1.7, it blocks merges of revision 1055 directly from
Al trunk:

$ cd branches/ proj - X

$ svn merge M trunk . -c 1055 --record-only
--- Merging r1055 into '.":
G

--- Recordi ng nmergeinfo for merge of r1055 into

G
$ svn diff --depth enpty .
| ndex:
.- . (revision 1070)
+++ . (wor ki ng copy)

Property changes on:

Modi fi ed: svn: nergei nfo
Merged /trunk:r1055
Merged /branches/frazzl e-feature-branch:r997-1003

Blocking changes with - - r ecor d- onl y works, but it's also alittle bit dangerous. The main problem is that we're not clearly dif-
ferentiating between the ideas of “| already have this change” and “I don't have this change, but don't currently want it.” We're ef-
fectively lying to the system, making it think that the change was previously merged. This puts the responsibility on you—the
user—to remember that the change wasn't actually merged, it just wasn't wanted. There's no way to ask Subversion for a list of
“blocked changelists.” If you want to track them (so that you can unblock them someday) you'll need to record them in atext file
somewhere, or perhaps in an invented property.

Keeping a Reintegrated Branch Alive

There is an alternative to destroying and re-creating a branch after reintegration. To understand why it works you need to under-
stand why the branch isinitially unfit for further use after it has been reintegrated.

Let's assume you created your branch in revision A. While working on your branch, you created one or more revisions which made
changes to the branch. Before reintegrating your branch back to trunk, you made a final merge from trunk to your branch, and com-
mitted the result of this merge as revision B.

When reintegrating your branch into the trunk, you create a new revision X which changes the trunk. The changes made to trunk in
thisrevision X are semantically equivalent to the changes you made to your branch between revisions A and B.

If you now try to merge outstanding changes from trunk to your branch, Subversion will consider changes made in revision X as
eligible for merging into the branch. However, since your branch already contains all the changes made in revision X, merging
these changes can result in spurious conflicts! These conflicts are often tree conflicts, especialy if renames were made on the

124

Branching and Merging

branch or the trunk while the branch was in development.

So what can be done about this? We need to make sure that Subversion does not try to merge revision X into the branch. Thisis
doneusing the- - r ecor d- onl y merge option, which was introduced in the section called “Blocking Changes’.

To carry out the record-only merge, get a working copy of the branch which was just reintegrated in revision X, and merge just re-
vision X from trunk into your branch, making sureto usethe- - r ecor d- onl y option.

This merge uses the cherry-picking merge syntax, which was introduced in the section called “ Cherrypicking”. Continuing with the
running example from the section called “ Reintegrating a Branch”, where revision X was revision 391;

$ cd ny-cal c-branch

$ svn update

Updating '."':

Updated to revision 393.

$ svn nmerge --record-only -c 391 ~/cal c/trunk

--- Recording nergeinfo for nerge of r391 into '.
u .

$ svn commit -m "Block revision 391 frombeing nmerged into ny-cal c-branch."

Sendi ng

Conmitted revision 394.

Now your branch is ready to soak up changes from the trunk again. After another sync of your branch to the trunk, you can even
reintegrate the branch a second time. If necessary, you can do another record-only merge to keep the branch alive. Rinse and re-
peat.

It should now also be apparent why deleting the branch and re-creating it has the same effect as doing the above record-only
merge. Because revision X is part of the natural history (see the sidebar Natural History and Implicit Mergeinfo) of the newly cre-
ated branch, Subversion will never attempt to merge revision X into the branch, avoiding spurious conflicts.

Merge-Sensitive Logs and Annotations

One of the main features of any version control system is to keep track of who changed what, and when they did it. The svn log
and svn blame subcommands are just the tools for this. when invoked on individua files, they show not only the history of
changesets that affected the file, but also exactly which user wrote which line of code, and when she did it.

When changes start getting replicated between branches, however, things start to get complicated. For example, if you were to ask
svn log about the history of your feature branch, it would show exactly every revision that ever affected the branch:

$ cd ny-cal c-branch
$ svn log -q

r341 | user | 2002-11-03 07:17:16 -0600 (Sun, 03 Nov 2002)

125

Branching and Merging

But is this really an accurate picture of al the changes that happened on the branch? What's left out here is the fact that revisions
390, 381, and 357 were actualy the results of merging changes from the trunk. If you look at one of these logs in detail, the mul-
tiple trunk changesets that comprised the branch change are nowhere to be seen:

$ svn log -v -r 390

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c

M / branches/ my- cal c- br anch/ READVE

Fi nal merge of trunk changes to ny-cal c-branch.

We happen to know that this merge to the branch was nothing but a merge of trunk changes. How can we see those trunk changes
as well? The answer is to use the - - use- ner ge- hi st ory (- g) option. This option expands those “child” changes that were
part of the merge.

$ svn log -v -r 390 -g

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c

M / branches/ ny- cal c- br anch/ READVE

Fi nal merge of trunk changes to ny-cal c-branch.

r383 | sally | 2002-11-21 03:19:00 -0600 (Thu, 21 Nov 2002) | 2 lines
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c
Merged via: r390

Fi x inverse graphic error on button.

r382 | sally | 2002-11-20 16:57:06 -0600 (Wed, 20 Nov 2002) | 2 lines
Changed pat hs:

M / branches/ nmy- cal c- br anch/ READVE
Merged via: r390

Docunent mny last fix in README

By making the log operation use merge history, we see not just the revision we queried (r390), but also the two revisions that came
along on the ride with it—a couple of changes made by Sally to the trunk. This is a much more complete picture of history!

The svn blame command also takes the - - use- ner ge- hi st ory (- g) option. If this option is neglected, somebody |ooking at
aline-by-line annotation of but t on. ¢ may get the mistaken impression that you were responsible for the lines that fixed a certain
error:

126

Branching and Merging

$ svn blame button.c

390 user retval = inverse_func(button, path);
390 user return retval;
390 user }

And while it's true that you did actually commit those three lines in revision 390, two of them were actually written by Sally back
inrevision 383:

$ svn blanme button.c -g

G 383 sally retval = inverse_func(button, path);
G 383 sally return retval;
390 user }

Now we know who to really blame for those two lines of code!

Noticing or Ignoring Ancestry

When conversing with a Subversion developer, you might very likely hear reference to the term ancestry. Thisword is used to de-
scribe the relationship between two objects in a repository: if they're related to each other, one object is said to be an ancestor of
the other.

For example, suppose you commit revision 100, which includes a change to afile f 00. ¢. Then f 00. c@®9 is an “ancestor” of
f 00. c@00. On the other hand, suppose you commit the deletion of f 00. ¢ inrevision 101, and then add a new file by the same
nameinrevision 102. Inthiscase, f 00. c@9 and f 00. c@ 02 may appear to be related (they have the same path), but in fact are
completely different objects in the repository. They share no history or “ancestry.”

The reason for bringing this up is to point out an important difference between svn diff and svn merge. The former command ig-
nores ancestry, while the latter command is quite sensitive to it. For example, if you asked svn diff to compare revisions 99 and
102 of f 00. ¢, you would see line-based diffs; the diff command is blindly comparing two paths. But if you asked svn merge to
compare the same two objects, it would notice that they're unrelated and first attempt to delete the old file, then add the new file;
the output would indicate a deletion followed by an add:

Most merges involve comparing trees that are ancestrally related to one another; therefore, svn merge defaults to this behavior.
Occasionaly, however, you may want the mer ge command to compare two unrelated trees. For example, you may have imported
two source-code trees representing different vendor releases of a software project (see the section called “Vendor Branches’). If
you ask svn merge to compare the two trees, you'd see the entire first tree being deleted, followed by an add of the entire second
tree! In these situations, you'll want svn merge to do a path-based comparison only, ignoring any relations between files and dir-
ectories. Add the - - i gnor e- ancest ry option to your merge command, and it will behave just like svn diff. (And conversely,
the--noti ce-ancest ry option will cause svn diff to behave like the syn mer ge command.)

127

Branching and Merging

The - - i gnor e- ancest ry option aso disables Merge Tracking. This means that svn: nmer gei nf o is not con-
_) sidered when svnh merge is determining what revisions to merge, nor is svn: mer gei nf o recorded to describe the
merge.

Merges and Moves

A common desire is to refactor source code, especially in Java-based software projects. Files and directories are shuffled around
and renamed, often causing great disruption to everyone working on the project. Sounds like a perfect case to use a branch, doesn't
it? Just create a branch, shuffle things around, and then merge the branch back to the trunk, right?

Alas, this scenario doesn't work so well right now and is considered one of Subversion's current weak spots. The problem is that
Subversion's svn update command isn't as robust asit should be, particularly when dealing with copy and move operations.

When you use svn copy to duplicate afile, the repository remembers where the new file came from, but it fails to transmit that in-
formation to the client which is running svn update or svn merge. Instead of telling the client, “Copy that file you already have to
this new location,” it sends down an entirely new file. This can lead to problems, especially because the same thing happens with
renamed files. A lesser-known fact about Subversion is that it lacks “true renames’—the svn move command is nothing more than
an aggregation of svn copy and svn delete.

For example, suppose that while working on your private branch, you rename i nt eger . ¢ to whol e. c. Effectively you've cre-
ated anew filein your branch that is a copy of the original file, and deleted the original file. Meanwhile, back ont r unk, Sally has
committed some improvementsto i nt eger . ¢c. Now you decide to merge your branch to the trunk:

$ cd calc/trunk

$ svn nerge --reintegrate ~/cal c/branches/ ny-cal c-branch
--- Merging differences between repository URLs into '.":
D i nteger.c

A whol e. ¢

--- Recordi ng nmergeinfo for merge between repository URLS into
u .

This doesn't look so bad at first glance, but it's also probably not what you or Sally expected. The merge operation has deleted the
latest version of the i nt eger. c file (the one containing Sally's latest changes), and blindly added your new whol e. ¢
file—which is a duplicate of the older version of i nt eger . c. The net effect is that merging your “rename” to the trunk has re-
moved Sally's recent changes from the latest revision!

This isn't true data loss. Sally's changes are till in the repository's history, but it may not be immediately obvious that this has
happened. The moral of this story is that until Subversion improves, be very careful about merging copies and renames from one
branch to another.

Blocking Merge-Unaware Clients

If you've just upgraded your server to Subversion 1.5 or later, there's arisk that pre-1.5 Subversion clients can cause problems with
Merge Tracking. This is because pre-1.5 clients don't support this feature; when one of these older clients performs svn merge, it
doesn't modify the value of the svn: ner gei nf o property at all. So the subsequent commit, despite being the result of a merge,
doesn't tell the repository about the duplicated changes—that information is lost. Later on, when “merge-aware’ clients attempt
automatic merging, they're likely to run into all sorts of conflicts resulting from repeated merges.

If you and your team are relying on the merge-tracking features of Subversion, you may want to configure your repository to pre-
vent older clients from committing changes. The easy way to do this is by inspecting the “capabilities’” parameter inthe st art -

128

Branching and Merging

conmi t hook script. If the client reports itself as having mer gei nf o capabilities, the hook script can alow the commit to start.
If the client doesn't report that capability, have the hook deny the commit. Example 4.1, “Merge-tracking gatekeeper start-commit
hook script” gives an example of such a hook script:

Example 4.1. Merge-tracking gatekeeper start-commit hook script

#!/ usr/ bin/env python
i mport sys

The start-conmit hook is invoked before a Subversion txn is created
in the process of doing a conmit. Subversion runs this hook

by invoking a program (script, executable, binary, etc.) naned
"start-conmmt' (for which this file is a tenplate)

with the follow ng ordered argunents:

[1] REPCS-PATH (the path to this repository)

[2] USER (the authenticated user attenpting to comit)

[3] CAPABILITIES (a colon-separated |ist of capabilities reported
by the client; see note bel ow)

HHFEHHFHER

capabilities = sys.argv[3].split(':")
if "mergeinfo" not in capabilities:
sys.stderr.wite("Conmts from nmerge-tracki ng-unaware clients are "
"not permtted. Please upgrade to Subversion 1.5 "
"or newer.\n")
Sys. exi

t(1)
sys. exit(0)

For more information about hook scripts, see the section called “Implementing Repository Hooks'.

The Final Word on Merge Tracking

The bottom line is that Subversion's merge-tracking feature has an extremely complex internal implementation, and the
svn: mer gei nf o property isthe only window the user hasinto the machinery.

Sometimes mergeinfo will appear on paths that you didn't expect to be touched by an operation. Sometimes mergeinfo won't be
generated at all, when you expect it to. Furthermore, the management of mergeinfo metadata has a whole set of taxonomies and be-
haviors around it, such as “explicit” versus “implicit” mergeinfo, “operative’ versus “inoperative” revisions, specific mechanisms
of mergeinfo “elision,” and even “inheritance” from parent to child directories.

We've chosen to only briefly cover, if at al, these detailed topics for a couple of reasons. First, the level of detail is absolutely
overwhelming for a typical user. Second, and more importantly, the typical user shouldn't have to understand these concepts; they
should typically remain in the background as pesky implementation details. All that said, if you enjoy this sort of thing, you can get
a fantastic overview in a paper posted a CollabNet's website; ht-
tp://www.collab.net/community/subversion/articles/merge-info.html.

For now, if you want to steer clear of the complexities of merge tracking, we recommend that you follow these simple best prac-
tices:
« For short-term feature branches, follow the simple procedure described throughout the section called “Basic Merging”.

» Avoid subtree merges and subtree mergeinfo, perform merges only on the root of your branches, not on subdirectories or files
(see Subtree Merges and Subtree Mergeinfo) .

» Don't ever edit the svn: ner gei nf o property directly; use svn merge with the - - r ecor d- onl y option to effect a desired

129

http://www.collab.net/community/subversion/articles/merge-info.html
http://www.collab.net/community/subversion/articles/merge-info.html

Branching and Merging

change to the metadata (as demonstrated in the section called “Blocking Changes”).

* Your merge target should be aworking copy which represents the root of a complete tree representing a single location in the re-
pository at asingle point in time;

e Don'tusethe--al | ow ni xed-r evi si ons option to merge into mixed-revision working copies.
« Don't merge to targets with “ switched” subdirectories (as described next in the section called “ Traversing Branches”).
* Avoid merges to targets with sparse directories. Likewise, don't merge to depths other than - - dept h=i nfinity

« Besureyou have read access to all of the merge source and read/write accessto al of the merge target.

Traversing Branches

The svn switch command transforms an existing working copy to reflect a different branch. While this command isn't strictly ne-
cessary for working with branches, it provides a nice shortcut. In one of our earlier examples, after creating your private branch,
you checked out a fresh working copy of the new repository directory. Instead, you can ssimply ask Subversion to change your
working copy of / cal ¢/ t r unk to mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.exanpl e.conlrepos/cal c/trunk

$ svn switch "/ cal c/branches/ ny-cal c- branch
U i nteger.c

U button.c

U Makefil e

Updated to revision 341.

$ svn info | grep URL
URL: http://svn.exanpl e.conifrepos/cal c/ branches/ my-cal c-branch

“Switching” a working copy that has no local modifications to a different branch results in the working copy looking just as it
would if you'd done a fresh checkout of the directory. It's usually more efficient to use this command, because often branches differ
by only a small degree. The server sends only the minimal set of changes necessary to make your working copy reflect the branch
directory.

The svn switch command also takesa - - r evi si on (- r) option, so you need not always move your working copy to the HEAD
of the branch.

Of course, most projects are more complicated than our cal ¢ example, and contain multiple subdirectories. Subversion users of-
ten follow a specific algorithm when using branches:

1. Copy the project's entire “trunk” to anew branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch work needs to happen on only a specific subdirectory, she uses svn switch to move
only that subdirectory to the branch. (Or sometimes users will switch just a single working file to the branch!) That way, the user

can continue to receive normal “trunk” updates to most of her working copy, but the switched portions will remain immune (unless
someone commits a change to her branch). This feature adds a whole new dimension to the concept of a “mixed working

130

Branching and Merging

—not only can working copies contain a mixture of working revisions, but they can also contain a mixture of repository locations
aswell.

Typically switched subdirectories share common ancestry with the location which is switched “away” from. However
_') svn switch can switch a subdirectory to mirror a repository location which it shares no common ancestry with. To do
thisyou need to usethe - - i gnor e- ancest r y option.

If your working copy contains a number of switched subtrees from different repository locations, it continues to function as nor-
mal. When you update, you'll receive patches to each subtree as appropriate. When you commit, your local changes are still applied
as asingle, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these locations must all be within the
same repository. Subversion repositories aren't yet able to communicate with one another; that feature is planned for the future.1°

their ht t pd. conf configuration file a permanent redirect from the old URL location to the new one (via the Re-

di r ect Per manent directive). Subversion clients will generally display the new repository URL in error messages
generated when the user attempts to use working copies which still reflect the old URL location. In fact, Subversion
1.7 clients will go a step further, automatically relocating the working copy to the new URL.

@j Administrators who need to change the URL of a repository which is accessed via HTTP are encouraged to add to

Switches and Updates

Have you noticed that the output of svn switch and svn update looks the same? The switch command is actually a superset
of the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so, and then sends a de-
scription of the differences back to the client. The only difference between svn switch and svn update is that the latter com-
mand always compares two identical repository paths.

That is, if your working copy isamirror of / cal ¢/ t r unk, svn update will automatically compare your working copy of /
cal c/trunk to/ cal c/trunk inthe HEAD revision. If you're switching your working copy to a branch, svn switch will
compare your working copy of / cal ¢/ t r unk to some other branch directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy through time and
space.

Because svn switch is essentialy a variant of svn update, it shares the same behaviors; any local modifications in your working
copy are preserved when new data arrives from the repository.

Have you ever found yourself making some complex edits (in your / t r unk working copy) and suddenly realized,
_} “Hey, these changes ought to be in their own branch?’ Thereis a great two step technique to do this:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. coni repos/ cal ¢/ branches/ newbranch \
-m"Create branch 'newbranch'.”
Committed revision 353.
$ svn sw tch ~/cal c/ branches/ newbranch
At revision 353.

0y ou can, however, use svn relocate if the URL of your server changes and you don't want to abandon an existing working copy. See svn relocate in Chapter 9,
Subversion Complete Reference for more information and an example.

131

Branching and Merging

The svn switch command, like svn update, preserves your local edits. At this point, your working copy is now are-
flection of the newly created branch, and your next svn commit invocation will send your changes there.

Tags

Another common version control concept is atag. A tag isjust a “snapshot” of a project in time. In Subversion, this idea already
seems to be everywhere. Each repository revision is exactly that—a snapshot of the filesystem after each commit.

However, people often want to give more human-friendly names to tags, such asr el ease- 1. 0. And they want to make snap-
shots of smaller subdirectories of the filesystem. After all, it's not so easy to remember that release 1.0 of a piece of software is a
particular subdirectory of revision 4822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of / cal ¢/ t r unk exactly asit looks in the HEAD re-
vision, make a copy of it:

$ svn copy http://svn. exanpl e. conl repos/cal c/trunk \
http://svn. exanpl e.conm repos/cal c/tags/rel ease-1.0 \
-m"Tagging the 1.0 rel ease of the 'calc' project.”

Commi tted revision 902.

This example assumes that a/ cal ¢/ t ags directory already exists. (If it doesn't, you can create it using svn mkdir.) After the
copy completes, the new r el ease- 1. O directory is forever a snapshot of how the/ t r unk directory looked in the HEAD revi-
sion at the time you made the copy. Of course, you might want to be more precise about exactly which revision you copy, in case
somebody else may have committed changes to the project when you weren't looking. So if you know that revision 901 of /

cal ¢/t runk isexactly the snapshot you want, you can specify it by passing-r 901 to the svn copy command.

But wait a moment: isn't this tag creation procedure the same procedure we used to create a branch? Yes, in fact, it is. In Subver-
sion, there's no difference between a tag and a branch. Both are just ordinary directories that are created by copying. Just as with
branches, the only reason a copied directory is a“tag” is because humans have decided to treat it that way: as long as nobody ever
commits to the directory, it forever remains a snapshot. If people start committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first approach is “hands off”: as
a matter of project policy, decide where your tags will live, and make sure all users know how to treat the directories they copy.
(That is, make sure they know not to commit to them.) The second approach is more paranoid: you can use one of the access con-
trol scripts provided with Subversion to prevent anyone from doing anything but creating new copies in the tags area (see
Chapter 6, Server Configuration). The paranoid approach, however, isn't usually necessary. If a user accidentally commits a change
to atag directory, you can simply undo the change as discussed in the previous section. Thisis version control, after all!

Creating a Complex Tag

Sometimes you may want a “snapshot” that is more complicated than asingle directory at asingle revision.

For example, pretend your project is much larger than our cal ¢ example: suppose it contains a number of subdirectories and
many more files. In the course of your work, you may decide that you need to create a working copy that is designed to have spe-
cific features and bug fixes. Y ou can accomplish this by selectively backdating files or directories to particular revisions (using svn
update with the - r option liberally), by switching files and directories to particular branches (making use of svn switch), or even
just by making a bunch of local changes. When you're done, your working copy is a hodgepodge of repository locations from dif-
ferent revisions. But after testing, you know it's the precise combination of data you need to tag.

132

Branching and Merging

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make a snapshot of your exact
working copy arrangement and store it in the repository. Luckily, svn copy actually has four different uses (which you can read
about in Chapter 9, Subversion Complete Reference), including the ability to copy aworking copy tree to the repository:

$1s
ny - wor ki ng- copy/

$ svn copy ny-working-copy \
http://svn. exanpl e. conm repos/ cal ¢/ tags/ mytag \
-m"Tag nmy existing working copy state."

Conmitted revision 940.

Now there is a new directory in the repository, / cal ¢/t ags/ myt ag, which is an exact snapshot of your working copy—mixed
revisions, URLSs, local changes, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a bunch of local changes
made to your working copy, and you'd like a collaborator to see them. Instead of running svn diff and sending a patch file (which
won't capture directory or symlink changes), you can use svn copy to “upload” your working copy to a private area of the reposit-
ory. Your collaborator can then either check out a verbatim copy of your working copy or use svn merge to receive your exact
changes.

While thisis a nice method for uploading a quick snapshot of your working copy, note that thisis not a good way to initially create
a branch. Branch creation should be an event unto itself, and this method conflates the creation of a branch with extra changes to
files, all within asinglerevision. This makes it very difficult (later on) to identify a single revision number as a branch point.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches and tags with the same un-
derlying mechanism (directory copies), and because branches and tags appear in normal filesystem space, many people find Sub-
version intimidating. It's almost too flexible. In this section, we'll offer some suggestions for arranging and managing your data
over time.

Repository Layout

There are some standard, recommended ways to organize a repository. Most people create at r unk directory to hold the “main
line” of development, abr anches directory to contain branch copies, and at ags directory to contain tag copies. If arepository
holds only one project, often people create these top-level directories:

/
trunk/
branches/

tags/

If arepository contains multiple projects, admins typically index their layout by project. See the section called “Planning Y our Re-
pository Organization” to read more about “project roots’, but here's an example of such alayout:

133

Branching and Merging

paint/
trunk/
branches/
tagy/
calc/
trunk/
branches/

tagy

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever works best for you or your
team. Remember that whatever you choosg, it's not a permanent commitment. Y ou can reorganize your repository at any time. Be-
cause branches and tags are ordinary directories, the svn move command can move or rename them however you wish. Switching
from one layout to another is just a matter of issuing a series of server-side moves; if you don't like the way things are organized in
the repository, just juggle the directories around.

Remember, though, that while moving directories is easy to do, you need to be considerate of other users as well. Your juggling
can disorient users with existing working copies. If a user has a working copy of a particular repository directory and your svn
move subcommand removes the path from the latest revision, then when the user next runs svn update, she is told that her work-
ing copy represents a path that no longer exists. Sheis then forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like any other versioned item.
For example, suppose you eventually finish all your work on your personal branch of the cal ¢ project. After merging all of your
changesback into/ cal ¢/t r unk, there's no need for your private branch directory to stick around anymore:

$ svn delete http://svn. exanpl e. conf repos/ cal c/ branches/ ny-cal c-branch \
-m "Renmovi ng obsol ete branch of calc project.”

Committed revision 375.

And now your branch is gone. Of course, it's not realy gone: the directory is simply missing from the HEAD revision, no longer
distracting anyone. If you use svn checkout, svn switch, or svn list to examine an earlier revision, you can still see your old
branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very easy in Subversion. If
there's adeleted directory (or file) that you'd like to bring back into HEAD, simply use svn copy to copy it from the old revision:

$ svn copy http://svn. exanpl e. coni repos/ cal c/ branches/ ny-cal c- branch@74 \
http://svn. exanpl e. conl repos/ cal ¢/ branches/ ny-cal c-branch \
-m "Restore ny-cal c-branch."

Conmitted revision 376.

In our example, your personal branch had arelatively short lifetime: you may have created it to fix a bug or implement a new fea-
ture. When your task is done, so is the branch. In software development, though, it's also common to have two “main” branches
running side by side for very long periods. For example, suppose it's time to release a stable version of the cal ¢ project to the
public, and you know it's going to take a couple of months to shake bugs out of the software. Y ou don't want people to add new

134

Branching and Merging

featuresto the project, but you don't want to tell al developersto stop programming either. So instead, you create a“ stable” branch
of the software that won't change much:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. coni repos/ cal ¢/ branches/stable-1.0 \
-m"Creating stable branch of calc project.”

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) featuresto/ cal ¢/t r unk, and you can declare a
project policy that only bug fixes are to be committed to/ cal ¢/ br anches/ st abl e- 1. 0. That is, as people continue to work
on the trunk, a human selectively ports bug fixes over to the stable branch. Even after the stable branch has shipped, you'll prob-
ably continue to maintain the branch for along time—that is, as long as you continue to support that release for customers. Well
discuss this more in the next section.

Common Branching Patterns

There are many different uses for branching and svn merge, and this section describes the most common.

Version control is most often used for software development, so here's aquick peek at two of the most common branching/merging
patterns used by teams of programmers. If you're not using Subversion for software development, feel free to skip this section. If
you're a software developer using version control for the first time, pay close attention, as these patterns are often considered best
practices by experienced folk. These processes aren't specific to Subversion; they're applicable to any version control system. Still,
it may help to see them described in Subversion terms.

Release Branches

Most software has atypical life cycle: code, test, release, repeat. There are two problems with this process. First, developers need
to keep writing new features while quality assurance teams take time to test supposedly stable versions of the software. New work
cannot halt while the software is tested. Second, the team almost always needs to support older, released versions of software; if a
bug is discovered in the latest code, it most likely exists in released versions as well, and customers will want to get that bug fix
without having to wait for amajor new release.

Here's where version control can help. The typical procedure looks like this:
1. Developers commit all new work to the trunk. Day-to-day changes are committed to / t r unk: new features, bug fixes, and so
on.

2. Thetrunk is copied to a “ release” branch. When the team thinks the software is ready for release (say, a1.0 release), / t r unk
might be copied to/ br anches/ 1. 0.

3. Teams continue to work in parallel. One team begins rigorous testing of the release branch, while another team continues new
work (say, for version 2.0) on/ t r unk. If bugs are discovered in either location, fixes are ported back and forth as necessary.
At some point, however, even that process stops. The branch is“frozen” for final testing right before arelease.

4. The branch is tagged and released. When testing is complete, / br anches/ 1. 0 iscopiedto/t ags/ 1. 0. 0 as areference
snapshot. Thetag is packaged and rel eased to customers.

5. The branch is maintained over time. While work continueson / t r unk for version 2.0, bug fixes continue to be ported from /

trunk to/ branches/ 1. 0. When enough bug fixes have accumulated, management may decide to do a 1.0.1 release: /
branches/ 1. O iscopiedto/ t ags/ 1. 0. 1, and thetag is packaged and released.

This entire process repeats as the software matures: when the 2.0 work is complete, a new 2.0 release branch is created, tested,

135

Branching and Merging

tagged, and eventually released. After some years, the repository ends up with a number of release branches in “maintenance’
mode, and a number of tags representing final shipped versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter (the one you've been working on while
Sally continues to work on / t r unk). It's a temporary branch created to work on a complex change without interfering with the
stability of / t r unk. Unlike release branches (which may need to be supported forever), feature branches are born, used for a
while, merged back to the trunk, and then ultimately deleted. They have a finite span of usefulness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature branch. Some projects never use
feature branches at all: commitsto / t r unk are a free-for-all. The advantage to this system is that it's simple—nobody needs to
learn about branching or merging. The disadvantage is that the trunk code is often unstable or unusable. Other projects use
branches to an extreme: no change is ever committed to the trunk directly. Even the most trivial changes are created on a short-
lived branch, carefully reviewed, and merged to the trunk. Then the branch is deleted. This system guarantees an exceptionally
stable and usable trunk at all times, but at the cost of tremendous process overhead.

Most projects take a middle-of-the-road approach. They commonly insist that / t r unk compile and pass regression tests at all
times. A feature branch is required only when a change requires alarge number of destabilizing commits. A good rule of thumb is
to ask this question: if the developer worked for daysin isolation and then committed the large change all at once (so that / t r unk
were never destabilized), would it be too large a change to review? |f the answer to that question is “yes,” the change should be de-
veloped on afeature branch. Asthe developer commits incremental changes to the branch, they can be easily reviewed by peers.

Finally, there's the issue of how to best keep afeature branch in “sync” with the trunk as work progresses. As we mentioned earlier,
there's a great risk to working on a branch for weeks or months; trunk changes may continue to pour in, to the point where the two
lines of development differ so greatly that it may become a nightmare trying to merge the branch back to the trunk.

This situation is best avoided by regularly merging trunk changes to the branch. Make up a policy: once a week, merge the last
week's worth of trunk changes to the branch.

When you are eventually ready to merge the “synchronized” feature branch back to the trunk, begin by doing a final merge of the
latest trunk changes to the branch. When that's done, the latest versions of branch and trunk are absolutely identical except for your
branch changes. Y ou then merge back with the - - r ei nt egr at e option:

$ cd trunk-worki ng- copy

$ svn update
Updating '."':
At revision 1910.

$ svn nerge --reintegrate ~/cal ¢/ branches/nybranch

--- Merging differences between repository URLs into '
U real.c

U i nteger.c

A newdi rectory

A newdi rectory/ newfil e

u .

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analogous to running svn update in a
working copy, while the final merge step is analogous to running svn commit from aworking copy. After all, what else is a work-
ing copy but avery shallow private branch? It's a branch that's capable of storing only one change at atime.

Vendor Branches

136

Branching and Merging

Asis especially the case when developing software, the data that you maintain under version control is often closely related to, or
perhaps dependent upon, someone else's data. Generally, the needs of your project will dictate that you stay as up to date as pos-
sible with the data provided by that external entity without sacrificing the stability of your own project. This scenario plays itself
out al the time—anywhere that the information generated by one group of people has a direct effect on that which is generated by
another group.

For example, software developers might be working on an application that makes use of a third-party library. Subversion has just
such a relationship with the Apache Portable Runtime (APR) library (see the section called “The Apache Portable Runtime Lib-
rary”). The Subversion source code depends on the APR library for all its portability needs. In earlier stages of Subversion's devel-
opment, the project closaly tracked APR's changing API, always sticking to the “bleeding edge” of the library's code churn. Now
that both APR and Subversion have matured, Subversion attempts to synchronize with APR's library APl only at well-tested, stable
release points.

Now, if your project depends on someone else's information, you could attempt to synchronize that information with your own in
several ways. Most painfully, you could issue oral or written instructions to all the contributors of your project, telling them to
make sure they have the specific versions of that third-party information that your project needs. If the third-party information is
maintained in a Subversion repository, you could also use Subversion's externals definitions to effectively “pin down” specific ver-
sions of that information to some location in your own working copy (see the section called “ Externals Definitions”).

But sometimes you want to maintain custom modifications to third-party code in your own version control system. Returning to the
software development example, programmers might need to make modifications to that third-party library for their own purposes.
These modifications might include new functionality or bug fixes, maintained internally only until they become part of an official
release of the third-party library. Or the changes might never be relayed back to the library maintainers, existing solely as custom
tweaks to make the library further suit the needs of the software devel opers.

Now you face an interesting situation. Y our project could house its custom modifications to the third-party datain some digointed
fashion, such as using patch files or full-fledged aternative versions of files and directories. But these quickly become maintenance
headaches, requiring some mechanism by which to apply your custom changes to the third-party code and necessitating regenera-
tion of those changes with each successive version of the third-party code that you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own version control system that
contains information provided by a third-party entity, or vendor. Each version of the vendor's data that you decide to absorb into
your project is called avendor drop.

Vendor branches provide two benefits. First, by storing the currently supported vendor drop in your own version control system,
you ensure that the members of your project never need to question whether they have the right version of the vendor's data. They
simply receive that correct version as part of their regular working copy updates. Second, because the data lives in your own Sub-
version repository, you can store your custom changes to it in-place—you have no more need of an automated (or worse, manual)
method for swapping in your customizations.

General Vendor Branch Management Procedure

Managing vendor branches generally works like this: first, you create a top-level directory (such as/ vendor) to hold the vendor
branches. Then you import the third-party code into a subdirectory of that top-level directory. Y ou then copy that subdirectory into
your main development branch (e.g., / t r unk) at the appropriate location. Y ou always make your local changes in the main devel-
opment branch. With each new release of the code you are tracking, you bring it into the vendor branch and merge the changes into
/ t r unk, resolving whatever conflicts occur between your local changes and the upstream changes.

An example will help to clarify this algorithm. We'll use a scenario where your development team is creating a calculator program
that links against a third-party complex number arithmetic library, libcomplex. We'll begin with the initial creation of the vendor
branch and the import of the first vendor drop. We'l call our vendor branch directory | i bconpl ex, and our code drops will go
into a subdirectory of our vendor branch called cur r ent . And since svn import creates all the intermediate parent directories it
needs, we can actually accomplish both of these steps with a single command:

$ svn inport /path/to/libconplex-1.0 \
http://svn. exanpl e. con repos/vendor /Il ibconpl ex/ current \

137

Branching and Merging

-m"inporting initial 1.0 vendor drop"

We now have the current version of the libcomplex source code in/ vendor /| i bconpl ex/ curr ent . Now, we tag that ver-
sion (see the section called “Tags’) and then copy it into the main development branch. Our copy will create a new directory called
i bconpl ex inour existing cal ¢ project directory. It isin this copied version of the vendor data that we will make our custom-
izations:

$ svn copy http://svn.exanpl e.com repos/vendor/|ibconpl ex/current \
http://svn. exanpl e. coni repos/ vendor/ | i bconplex/ 1.0 \
-m "tagging |ibconplex-1.0"

$ svn copy http://svn.exanpl e.com repos/vendor/|ibconplex/1.0 \
http://svn. exanpl e. con repos/cal c/li bconpl ex \
-m*"bringing libconplex-1.0 into the main branch"

We check out our project's main branch—which now includes a copy of the first vendor drop—and we get to work customizing the
libcomplex code. Before we know it, our modified version of libcomplex is now completely integrated into our calculator
program.i1

A few weeks later, the developers of libcomplex release anew version of their library—version 1.1—which contains some features
and functionality that we really want. We'd like to upgrade to this new version, but without losing the customizations we made to
the existing version. What we essentially would like to do is to replace our current baseline version of libcomplex 1.0 with a copy
of libcomplex 1.1, and then re-apply the custom modifications we previously made to that library to the new version. But we actu-
ally approach the problem from the other direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to our
modified copy of it.

To perform this upgrade, we check out a copy of our vendor branch and replace the code in the cur r ent directory with the new
libcomplex 1.1 source code. We quite literally copy new files on top of existing files, perhaps exploding the libcomplex 1.1 release
tarball atop our existing files and directories. The goal here is to make our cur r ent directory contain only the libcomplex 1.1
code and to ensure that all that code is under version control. Oh, and we want to do this with as little version control history dis-
turbance as possible.

After replacing the 1.0 code with 1.1 code, svn status will show files with local modifications as well as, perhaps, some unver-
sioned files. If we did what we were supposed to do, the unversioned files are only those new files introduced in the 1.1 release of
libcomplex—we run svn add on those to get them under version control. If the 1.1 code no longer has certain files that were in the
1.0 tree, it may be hard to notice them; you'd have to compare the two trees with some external tool and then svn delete any files
present in 1.0 but not in 1.1. (Although it might also be just fine to let these same files live on in unused obscurity!) Finaly, once
our cur r ent working copy contains only the libcomplex 1.1 code, we commit the changes we made to get it looking that way.

Our cur r ent branch now contains the new vendor drop. We tag the new version as 1.1 (in the same way we previously tagged

the version 1.0 vendor drop), and then merge the differences between the tag of the previous version and the new current version
into our main development branch:

$ cd wor ki ng-copi es/cal ¢

$ svn nerge ~/vendor/libconplex/1.0 \
N vendor /Il ibconpl ex/current \
i bconpl ex

...# resolve all the conflicts between their changes and our changes

"And is entirely bug-free, of course!

138

Branching and Merging

$ svn commit -m"nerging libconplex-1.1 into the main branch"

In the trivial use case, the new version of our third-party tool would look, from a files-and-directories point of view, just like the
previous version. None of the libcomplex source files would have been deleted, renamed, or moved to different |ocations—the new
version would contain only textual modifications against the previous one. In a perfect world, our modifications would apply
cleanly to the new version of the library, with absolutely no complications or conflicts.

But things aren't aways that simple, and in fact it is quite common for source files to get moved around between releases of soft-
ware. This complicates the process of ensuring that our modifications are till valid for the new version of code, and things can
quickly degrade into a situation where we have to manually re-create our customizations in the new version. Once Subversion
knows about the history of a given source file—including all its previous locations—the process of merging in the new version of
the library is pretty simple. But we are responsible for telling Subversion how the source file layout changed from vendor drop to
vendor drop.

svn_load_dirs.pl

Vendor drops that contain more than a few deletes, additions, and moves complicate the process of upgrading to each successive
version of the third-party data. So Subversion suppliesthe svn_load_dirs.pl script to assist with this process. This script automates
the importing steps we mentioned in the general vendor branch management procedure to make sure mistakes are minimized. Y ou
will till be responsible for using the merge commands to merge the new versions of the third-party data into your main develop-
ment branch, but svn_load_dirs.pl can help you more quickly and easily arrive at that stage.

In short, svn_load_dirs.pl is an enhancement to svn import that has several important characteristics:
* It can berun at any point in time to bring an existing directory in the repository to exactly match an external directory, perform-
ing all the necessary adds and deletes, and optionally performing moves, too.

* |t takes care of complicated series of operations between which Subversion requires an intermediate commit—such as before re-
naming afile or directory twice.

* It will optionally tag the newly imported directory.

« It will optionally add arbitrary properties to files and directories that match aregular expression.

svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base Subversion directory to work in.
This argument is followed by the URL—relative to the first argument—into which the current vendor drop will be imported. Fi-
nally, the third argument is the local directory to import. Using our previous example, atypical run of svn_load_dirs.pl might look
likethis:

$ svn_load_dirs.pl http://svn.exanpl e.conirepos/vendor/|ibconplex \
current \
/path/to/libconmplex-1.1

You can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the -t command-line option and specify-
ing atag name. Thistag is another URL relative to the first program argument.

139

Branching and Merging

$ svn_load dirs.pl -t libconplex-1.1 \
http://svn. exanpl e. conf repos/ vendor/ | i bconpl ex \
current \

/path/to/libconmplex-1.1

When you run svn_load_dirs.pl, it examines the contents of your existing “current” vendor drop and compares them with the pro-
posed new vendor drop. In the trivial case, no files will be in one version and not the other, and the script will perform the new im-
port without incident. If, however, there are discrepancies in the file layouts between versions, svn_load_dirs.pl will ask you how
to resolve those differences. For example, you will have the opportunity to tell the script that you know that the file mat h. ¢ in
version 1.0 of libcomplex was renamed to ari t hneti c. ¢ in libcomplex 1.1. Any discrepancies not explained by moves are
treated as regular additions and deletions.

The script also accepts a separate configuration file for setting properties on added files and directories which match a regular ex-
pression. This configuration file is specified to svn_load_dirs.pl using the - p command-line option. Each line of the configuration
file is a whitespace-delimited set of two or four values. a Perl-style regular expression against which to match the added path, a
control keyword (either br eak or cont), and then optionally a property hame and value.

\. png$ br eak svn: m nme-type i mage/ png

\.] pe?g$ br eak svn: m me-type i mage/ | peg

\. mBu$ cont svn: m ne-type audi o/ x- npegur |
\. nBu$ br eak svn: eol -style LF

C* br eak svn: eol -styl e native

For each added path, the configured property changes whose regular expression matches the path are applied in order, unless the
control specification is br eak (which means that no more property changes should be applied to that path). If the control specific-
ation iscont —an abbreviation for cont i nue—matching will continue with the next line of the configuration file.

Any whitespace in the regular expression, property name, or property value must be surrounded by either single or double quotes.
Y ou can escape quotes that are not used for wrapping whitespace by preceding them with a backslash (\) character. The backslash
escapes only quotes when parsing the configuration file, so do not protect any other characters beyond what is necessary for the
regular expression.

Summary

We covered alot of ground in this chapter. We discussed the concepts of tags and branches and demonstrated how Subversion im-
plements these concepts by copying directories with the svn copy command. We showed how to use svn merge to copy changes
from one branch to another or roll back bad changes. We went over the use of svn switch to create mixed-location working copies.
And we talked about how one might manage the organization and lifetimes of branchesin arepository.

Remember the Subversion mantra: branches and tags are cheap. So don't be afraid to use them when needed!

As a helpful reminder of all the operations we discussed, here is handy reference table you can consult as you begin to make use of
branches.

Table 4.1. Branching and merging commands

Action Command
Create abranch or tag svn copy URL1 URL2
Switch aworking copy to a branch or tag svn switch URL

140

Branching and Merging

Action

Command

Synchronize a branch with trunk

svn nmerge trunkURL; svn conmit

See merge history or eligible changesets

svn mergei nfo SOURCE TARGET

Merge a branch back into trunk

mt

svn merge --reintegrate branchURL; svn com

Merge one specific change

svn merge -c¢ REV URL; svn conmit

Merge arange of changes

svn nmerge -r REV1: REV2 URL; svn commt

Block a change from automatic merging

svh nerge -c REV --record-only URL;
conmi t

svn

Preview amerge

svn nerge URL --dry-run

Abandon merge results

svn revert -R .

Resurrect something from history

svn copy URL@REV | ocal PATH

Undo a committed change

svn nerge -c¢ -REV URL; svn comit

Examine merge-sensitive history

svn log -g; svn blane -g

Create atag from aworking copy

svn copy . tagURL

Rearrange a branch or tag

svn nove URL1 URL2

Remove a branch or tag

svn del ete URL

141

Chapter 5. Repository Administration

The Subversion repository is the central storehouse of all your versioned data. As such, it becomes an obvious candidate for al the
love and attention an administrator can offer. While the repository is generally a low-maintenance item, it is important to under-
stand how to properly configure and care for it so that potential problems are avoided, and so actual problems are safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository. We'll aso talk about repository maintenance,
providing examples of how and when to use various related tools provided with Subversion. We'll address some common questions
and mistakes and give some suggestions on how to arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version control (i.e., via a Subversion
client), you can skip this chapter altogether. However, if you are, or wish to become, a Subversion repository administrator,” this
chapter isfor you.

The Subversion Repository, Defined

Before jJumping into the broader topic of repository administration, let's further define what a repository is. How does it look? How
does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As an administrator, you'll be expected to understand the
composition of a repository both from a literal, OS-level perspective—how a repository looks and acts with respect to non-
Subversion tools—and from alogical perspective—dealing with how data is represented inside the repository.

Seen through the eyes of atypical file browser application (such as Windows Explorer) or command-line based filesystem naviga-
tion tools, the Subversion repository is just another directory full of stuff. There are some subdirectories with human-readable con-
figuration files in them, some subdirectories with some not-so-human-readable data files, and so on. As in other areas of the Sub-
version design, modularity is given high regard, and hierarchical organization is preferred to cluttered chaos. So a shallow glance
into atypical repository from a nuts-and-bolts perspective is sufficient to reveal the basic components of the repository:

$ |Is repos
conf/ db/ format hooks/ |ocks/ ~README. t xt

Here's a quick fly-by overview of what exactly you're seeing in this directory listing. (Don't get bogged down in the termino-
logy—detailed coverage of these components exists elsewhere in this and other chapters.)

conf
A directory containing configuration files

db
The data store for all of your versioned data

format
A filethat contains a single integer that indicates the version number of the repository layout

hooks
A directory full of hook script templates (and hook scripts themselves, once you've installed some)

locks

This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working copy where every-
one's data hangs out.

142

Repository Administration

A directory for Subversion's repository lock files, used for tracking accessors to the repository

README.txt
A file whose contents merely inform its readers that they are looking at a Subversion repository

used this directory to store information about WebDAV activities—mappings of high-level WebDAV protocol con-
cepts to Subversion commit transactions. Subversion 1.5 changed that behavior, moving ownership of the activities
directory, and the ability to configure its location, into nod_dav_svn itself. Now, new repositories will not neces-
sarily have adav subdirectory unless mod_dav_svn isin use and hasn't been configured to store its activities data-
base elsewhere. See the section called “Directives’ in Chapter 9, Subversion Complete Reference for more informa
tion.

<> Prior to Subversion 1.5, the on-disk repository structure also always contained a dav subdirectory. nod_dav_svn

Of course, when accessed via the Subversion libraries, this otherwise unremarkable collection of files and directories suddenly be-
comes an implementation of avirtual, versioned filesystem, complete with customizable event triggers. This filesystem has its own
notions of directories and files, very similar to the notions of such things held by real filesystems (such as NTFS, FAT32, ext3,
etc.). But thisis a special filesystem—it hangs these directories and files from revisions, keeping all the changes you've ever made
to them safely stored and forever accessible. Thisiswhere the entirety of your versioned data lives.

Strategies for Repository Deployment

Due largely to the simplicity of the overall design of the Subversion repository and the technologies on which it relies, creating and
configuring a repository are fairly straightforward tasks. There are a few preliminary decisions you'll want to make, but the actual
work involved in any given setup of a Subversion repository is pretty basic, tending toward mindless repetition if you find yoursel f
setting up multiples of these things.

Some things you'll want to consider beforehand, though, are:

» What data do you expect to live in your repository (or repositories), and how will that data be organized?

Where will your repository live, and how will it be accessed?

» What types of access control and repository event reporting do you need?

Which of the available types of data store do you want to use?

In this section, well try to help you answer those questions.

Planning Your Repository Organization

While Subversion allows you to move around versioned files and directories without any loss of information, and even provides
ways of moving whole sets of versioned history from one repository to another, doing so can greatly disrupt the workflow of those
who access the repository often and come to expect things to be at certain locations. So before creating a new repository, try to peer
into the future a bit; plan ahead before placing your data under version control. By conscientiously “laying out” your repository or
repositories and their versioned contents ahead of time, you can prevent many future headaches.

Let's assume that as repository administrator, you will be responsible for supporting the version control system for several projects.
Your first decision is whether to use a single repository for multiple projects, or to give each project its own repository, or some
compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplicated maintenance. A single
repository means that there is one set of hook programs, one thing to routinely back up, one thing to dump and load if Subversion
releases an incompatible new version, and so on. Also, you can move data between projects easily, without losing any historical

143

Repository Administration

versioning information.

The downside of using asingle repository is that different projects may have different requirementsin terms of the repository event
triggers, such as needing to send commit notification emails to different mailing lists, or having different definitions about what
does and does not constitute a legitimate commit. These aren't insurmountable problems, of course—it just means that al of your
hook scripts have to be sensitive to the layout of your repository rather than assuming that the whole repository is associated with a
single group of people. Also, remember that Subversion uses repository-global revision numbers. While those numbers don't have
any particular magical powers, some folks still don't like the fact that even though no changes have been made to their project
lately, the youngest revision number for the repository keeps climbing because other projects are actively adding new revisions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they relate to each other. You
might have a few repositories with a handful of projects in each repository. That way, projects that are likely to want to share data
can do so easily, and as new revisions are added to the repository, at least the developers know that those new revisions are at least
remotely related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think about directory hierarchies
within the repositories themselves. Because Subversion uses regular directory copies for branching and tagging (see Chapter 4,
Branching and Merging), the Subversion community recommends that you choose a repository location for each project root—the
“topmost” directory that contains data related to that project—and then create three subdirectories beneath that root: t r unk, mean-
ing the directory under which the main project development occurs; br anches, which is a directory in which to create various
named branches of the main development line; and t ags, which is a collection of tree snapshots that are created, and perhaps des-
troyed, but never changed.3

For example, your repository might look like this:

cal c/

trunk/

t ags/

br anches/
cal endar/

t runk/

t ags/

br anches/
spr eadsheet/

t runk/

t ags/

br anches/

Note that it doesn't matter where in your repository each project root is. If you have only one project per repository, the logical
place to put each project root is at the root of that project's respective repository. If you have multiple projects, you might want to
arrange them in groups inside the repository, perhaps putting projects with similar goals or shared code in the same subdirectory, or
maybe just grouping them alphabetically. Such an arrangement might look like this:

utils/
cal c/
trunk/
t ags/
br anches/

2Whether founded in ignorance or in poorly considered concepts about how to derive legitimate software development metrics, global revision numbers are a silly
thing to fear, and not the kind of thing you should weigh when deciding how to arrange your projects and repositories.
®Thet r unk, t ags, and br anches trio is sometimes referred to as “ the TTB directories.”

144

Repository Administration

cal endar/
t runk/
t ags/
br anches/

of ficel
spreadsheet/
t runk/
t ags/
branches/

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a particular layout—in its eyes, a dir-
ectory is a directory is a directory. Ultimately, you should choose the repository arrangement that meets the needs of the people
who work on the projects that live there.

In the name of full disclosure, though, welll mention another very common layout. In this layout, the t r unk, t ags, and
br anches directories livein the root directory of your repository, and your projects are in subdirectories beneath those, like so:

trunk/
cal c/
cal endar/
spreadsheet/

t ags/
cal c/
cal endar/
spr eadsheet/

br anches/
cal c/
cal endar/
spreadsheet/

There's nothing particularly incorrect about such a layout, but it may or may not seem as intuitive for your users. Especially in
large, multiproject situations with many users, those users may tend to be familiar with only one or two of the projects in the repos-
itory. But the projects-as-branch-siblings approach tends to deemphasize project individuality and focus on the entire set of
projects as a single entity. That's a social issue, though. We like our originally suggested arrangement for purely practical reas-
ons—it's easier to ask about (or modify, or migrate elsewhere) the entire history of a single project when there's a single repository
path that holds the entire history—past, present, tagged, and branched—for that project and that project alone.

Deciding Where and How to Host Your Repository

Before creating your Subversion repository, an obvious question you'll need to answer is where the thing is going to live. Thisis
strongly connected to myriad other questions involving how the repository will be accessed (via a Subversion server or directly),
by whom (users behind your corporate firewall or the whole world out on the open Internet), what other services you'll be provid-
ing around Subversion (repository browsing interfaces, email-based commit natification, etc.), your data backup strategy, and so
on.

We cover server choice and configuration in Chapter 6, Server Configuration, but the point we'd like to briefly make hereis simply
that the answers to some of these other questions might have implications that force your hand when deciding where your reposit-
ory will live. For example, certain deployment scenarios might require accessing the repository via a remote filesystem from mul-

145

Repository Administration

tiple computers, in which case (as you'll read in the next section) your choice of a repository backend data store turns out not to be
achoice at al because only one of the available backends will work in this scenario.

Addressing each possible way to deploy Subversion is both impossible and outside the scope of this book. We simply encourage
you to evaluate your options using these pages and other sources as your reference material and to plan ahead.

Choosing a Data Store

Subversion provides two options for the type of underlying data store—often referred to as “the backend” or, somewhat confus-
ingly, “the (versioned) filesystem” —that each repository uses. One type of data store keeps everything in a Berkeley DB (or BDB)
database environment; repositories that use this type are often referred to as being “BDB-backed.” The other type stores datain or-
dinary flat files, using a custom format. Subversion developers have adopted the habit of referring to this latter data storage mech-
anism as FSFS'—a versioned filesystem implementation that uses the native OS filesystem directly—rather than via a database lib-
rary or some other abstraction layer—to store data.

Table 5.1, “Repository data store comparison” gives a comparative overview of Berkeley DB and FSFS repositories.

Table5.1. Repository data store comparison

Category Feature Berkeley DB FSFS
Reliability Dataintegrity When properly deployed, ex-|Older versions had some rarely
tremely reliable; Berkeley DB |demonstrated, but data-
4.4 brings auto-recovery destroying bugs
Sensitivity to interruptions Very; crashes and permission|Quite insensitive

problems can leave the data-
base “wedged,” requiring
journaled recovery procedures

Accessibility Usable from aread-only mount |No Yes
Platform-independent storage |No Yes
Usable over network filesys-|Generaly, no Yes
tems

Group permissions handling Sensitive to user umask prob-|Works around umask problems
lems; best if accessed by only

one user
Scalability Repository disk usage Larger (especidly if logfiles|Smaller
aren't purged)

Number of revision trees Database; no problems Some older native filesystems
don't scale well with thousands
of entriesin asingle directory

Directories with many files Slower Faster

Performance Checking out latest revision No meaningful difference No meaningful difference
Large commits Slower overall, but cost is|Faster overal, but finaization
amortized acrossthe lifetime of [delay may cause client
the commit timeouts

There are advantages and disadvantages to each of these two backend types. Neither of them is more “official” than the other,
though the newer FSFS is the default data store as of Subversion 1.2. Both are reliable enough to trust with your versioned data.
But as you can see in Table 5.1, “Repository data store comparison”, the FSFS backend provides quite a bit more flexibility in
terms of its supported deployment scenarios. More flexibility means you have to work a little harder to find ways to deploy it in-
correctly. Those reasons—plus the fact that not using Berkeley DB means there's one fewer component in the system—Ilargely ex-

40ften pronounced “fuzz-fuzz,” if Jack Repenning has anything to say about it. (This book, however, assumes that the reader is thinking “ eff-ess-eff-ess.”)
146

Repository Administration

plain why today almost everyone uses the FSFS backend when creating new repositories.

Fortunately, most programs that access Subversion repositories are blissfully ignorant of which backend data store isin use. And
you aren't even necessarily stuck with your first choice of a data store—in the event that you change your mind later, Subversion
provides ways of migrating your repository’s data into another repository that uses a different backend data store. We talk more
about that later in this chapter.

The following subsections provide a more detailed look at the available backend data store types.

Berkeley DB

When the initial design phase of Subversion was in progress, the developers decided to use Berkeley DB for a variety of reasons,
including its open source license, transaction support, reliability, performance, API simplicity, thread safety, support for cursors,
and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes accessing your Subversion
repositories don't have to worry about accidentally clobbering each other's data. The isolation provided by the transaction system is
such that for any given operation, the Subversion repository code sees a static view of the database—not a database that is con-
stantly changing at the hand of some other process—and can make decisions based on that view. If the decision made happens to
conflict with what another process is doing, the entire operation is rolled back as though it never happened, and Subversion grace-
fully retries the operation against a new, updated (and yet still static) view of the database.

Another great feature of Berkeley DB is hot backups—the ability to back up the database environment without taking it “ offline.”
Well discuss how to back up your repository later in this chapter (in the section called “ Repository Backup”), but the benefits of
being able to make fully functional copies of your repositories without any downtime should be obvious.

Berkeley DB is also a very reliable database system when properly used. Subversion uses Berkeley DB's logging facilities, which
means that the database first writes to on-disk logfiles a description of any modifications it is about to make, and then makes the
modification itself. Thisisto ensure that if anything goes wrong, the database system can back up to a previous checkpoint—a loc-
ation in the logfiles known not to be corrupt—and replay transactions until the data is restored to a usable state. See the section
called “Managing Disk Space” later in this chapter for more about Berkeley DB logfiles.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berkeley DB environments are
not portable. You cannot simply copy a Subversion repository that was created on a Unix system onto a Windows system and ex-
pect it to work. While much of the Berkeley DB database format is architecture-independent, other aspects of the environment are
not. Second, Subversion uses Berkeley DB in a way that will not operate on Windows 95/98 systems—if you need to house a
BDB-backed repository on a Windows machine, stick with Windows 2000 or later.

While Berkeley DB promises to behave correctly on network shares that meet a particular set of spec:ific:ations,5 most networked
filesystem types and appliances do not actually meet those requirements. And in no case can you alow a BDB-backed repository
that resides on a network share to be accessed by multiple clients of that share at once (which quite often is the whole point of hav-
ing the repository live on a network share in the first place).

If you attempt to use Berkeley DB on a noncompliant remote filesystem, the results are unpredictable—you may see
mysterious errors right away, or it may be months before you discover that your repository database is subtly corrup-
ted. Y ou should strongly consider using the FSFS data store for repositories that need to live on a network share.

Finally, because Berkeley DB is alibrary linked directly into Subversion, it's more sensitive to interruptions than a typical relation-
a database system. Most SQL systems, for example, have a dedicated server process that mediates al accessto tables. If a program
accessing the database crashes for some reason, the database daemon notices the lost connection and cleans up any mess left be-
hind. And because the database daemon is the only process accessing the tables, applications don't need to worry about permission
conflicts. These things are not the case with Berkeley DB, however. Subversion (and programs using Subversion libraries) access
the database tables directly, which means that a program crash can leave the database in a temporarily inconsistent, inaccessible
state. When this happens, an administrator needs to ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance.

5Berkeley DB requires that the underlying filesystem implement strict POSIX locking semantics, and more importantly, the ability to map files directly into process
memory.

147

Repository Administration

Other things can cause a repository to “wedge” besides crashed processes, such as programs conflicting over ownership and per-
missions on the database files.

Berkeley DB 4.4 brings (to Subversion 1.4 and later) the ability for Subversion to automatically and transparently re-

/ cover Berkeley DB environments in need of such recovery. When a Subversion process attaches to a repository's
Berkeley DB environment, it uses some process accounting mechanisms to detect any unclean disconnections by pre-
vious processes, performs any necessary recovery, and then continues on as though nothing happened. This doesn't
completely eliminate instances of repository wedging, but it does drastically reduce the amount of human interaction
required to recover from them.

So while a Berkeley DB repository is quite fast and scalable, it's best used by a single server process running as one user—such as
Apache's httpd or svnserve (see Chapter 6, Server Configuration)—rather than accessing it as many different usersviafil e://
or svn+ssh:// URLs. If you're accessing a Berkeley DB repository directly as multiple users, be sure to read the section called
“Supporting Multiple Repository Access Methods™ later in this chapter.

FSFS

In mid-2004, a second type of repository storage system—one that doesn't use a database at all—came into being. An FSFS repos-
itory stores the changes associated with arevisionin asinglefile, and so all of arepository's revisions can be found in a single sub-
directory full of numbered files. Transactions are created in separate subdirectories as individua files. When compl ete, the transac-
tion file is renamed and moved into the revisions directory, thus guaranteeing that commits are atomic. And because arevision file
is permanent and unchanging, the repository aso can be backed up while “hot,” just like a BDB-backed repository.

Revision files and shards

FSFS repositories contain files that describe the changes made in a single revision, and files that contain the revision proper-
ties associated with a single revision. Repositories created in versions of Subversion prior to 1.5 keep these files in two dir-
ectories—one for each type of file. As new revisions are committed to the repository, Subversion drops more files into these
two directories—aover time, the number of these files in each directory can grow to be quite large. This has been observed to
cause performance problems on certain network-based filesystems.

Subversion 1.5 creates FSFS-backed repositories using a slightly modified layout in which the contents of these two director-
ies are sharded, or scattered across several subdirectories. This can greatly reduce the time it takes the system to locate any
one of these files, and therefore increases the overall performance of Subversion when reading from the repository.

Subversion 1.6 and later takes the sharded layout one step further, allowing administrators to optionally pack each of their re-
pository shards up into a single multi-revision file. This can have both performance and disk usage benefits. See the section
called “Packing FSFS filesystems” for more information.

The FSFS revision files describe arevision's directory structure, file contents, and deltas against files in other revision trees. Unlike
a Berkeley DB database, this storage format is portable across different operating systems and isn't sensitive to CPU architecture.
Because no journaling or shared-memory files are being used, the repository can be safely accessed over a network filesystem and
examined in aread-only environment. The lack of database overhead also means the overall repository sizeisahbit smaller.

FSFS has different performance characteristics, too. When committing a directory with a huge number of files, FSFS is able to
more quickly append directory entries. On the other hand, FSFS has a longer delay when finalizing a commit while it performs
tasks that the BDB backend amortizes across the lifetime of the commit, which could in extreme cases cause clients to time out
while waiting for aresponse.

The most important distinction, however, is FSFS's imperviousness to wedging when something goes wrong. If a process using a
Berkeley DB database runs into a permissions problem or suddenly crashes, the database can be left in an unusable state until an
administrator recoversit. If the same scenarios happen to a process using an FSFS repository, the repository isn't affected at all. At
worst, some transaction data s left behind.

148

Repository Administration

Creating and Configuring Your Repository

Earlier in this chapter (in the section called “ Strategies for Repository Deployment”), we looked at some of the important decisions
that should be made before creating and configuring your Subversion repository. Now, we finally get to get our hands dirty! In this
section, we'll see how to actually create a Subversion repository and configure it to perform custom actions when specia repository
events occur.

Creating the Repository

Subversion repository creation is an incredibly simple task. The svnadmin utility that comes with Subversion provides a subcom-
mand (svnadmin create) for doing just that.

$ # Create a repository
$ svnadm n create /var/svn/repos

Assuming that the parent directory / var / svn exists and that you have sufficient permissions to modify that directory, the previ-
ous command creates a new repository in the directory / var / svn/ r epos, and with the default filesystem data store (FSFS).
Y ou can explicitly choose the filesystem type using the - - f s- t ype argument, which accepts as a parameter either f sf s or bdb.

$ # Create an FSFS-backed repository
$ svnadmin create --fs-type fsfs /var/svn/repos

Create a Berkel ey-DB-backed repository
$ svnadm n create --fs-type bdb /var/svn/repos

After running this ssmple command, you have a Subversion repository. Depending on how users will access this new repository,
you might need to fiddle with its filesystem permissions. But since basic system administration is rather outside the scope of this
text, welll leave further exploration of that topic as an exercise to the reader.

The path argument to svnadmin is just a regular filesystem path and not a URL like the svn client program uses

_') when referring to repositories. Both svnadmin and svnlook are considered server-side utilities—they are used on the
machine where the repository resides to examine or modify aspects of the repository, and are in fact unable to per-
form tasks across a network. A common mistake made by Subversion newcomers is trying to pass URLs (even
“local” fil e:// ones) to these two programs.

Present in the db/ subdirectory of your repository is the implementation of the versioned filesystem. Y our new repository's ver-
sioned filesystem beginslife at revision 0, which is defined to consist of nothing but the top-level root (/) directory. Initially, revi-
sion 0 also has asingle revision property, svn: dat e, set to the time at which the repository was created.

Now that you have arepository, it's time to customize it.

149

Repository Administration

While some parts of a Subversion repository—such as the configuration files and hook scripts—are meant to be ex-
amined and modified manually, you shouldn't (and shouldn't need to) tamper with the other parts of the repository
“by hand.” The svnadmin tool should be sufficient for any changes necessary to your repository, or you can look to
third-party tools (such as Berkeley DB's tool suite) for tweaking relevant subsections of the repository. Do not at-
tempt manual manipulation of your version control history by poking and prodding around in your repository's data
storefiles!

Implementing Repository Hooks

A hook is a program triggered by some repository event, such as the creation of a new revision or the modification of an unver-
sioned property. Some hooks (the so-called “pre hooks”) run in advance of arepository operation and provide a means by which to
both report what is about to happen and prevent it from happening at al. Other hooks (the “post hooks”) run after the completion
of a repository event and are useful for performing tasks that examine—but don't modify—the repository. Each hook is handed
enough information to tell what that event is (or was), the specific repository changes proposed (or completed), and the username
of the person who triggered the event.

Thehooks subdirectory is, by default, filled with templates for various repository hooks:

$ |'s repos/ hooks/

post-comi t. t npl post - unl ock.tnpl pre-revprop-change. t npl
post -1 ock. t npl pre-comm t. t npl pre-unl ock. t npl

post - revprop-change. tnmpl pre-|ock. tnpl start-commt.tnpl

$

There is one template for each hook that the Subversion repository supports; by examining the contents of those template scripts,
you can see what triggers each script to run and what data is passed to that script. Also present in many of these templates are ex-
amples of how one might use that script, in conjunction with other Subversion-supplied programs, to perform common useful
tasks. To actually install a working hook, you need only place some executable program or script into the r epos/ hooks direct-
ory, which can be executed as the name (such as start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python program, a compiled C bin-
ary, or any number of other things) named exactly like the name of the hook. Of course, the template files are present for more than
just informational purposes—the easiest way to install a hook on Unix platformsisto simply copy the appropriate template fileto a
new file that lacks the . t npl extension, customize the hook's contents, and ensure that the script is executable. Windows,
however, uses file extensions to determine whether a program is executable, so you would need to supply a program whose base-
name is the name of the hook and whose extension is one of the special extensions recognized by Windows for executable pro-
grams, such as. exe for programsand . bat for batch files.

vironment variables are set at all, not even $PATH (or YPATHY under Windows). Because of this, many administrat-
ors are baffled when their hook program runs fine by hand, but doesn't work when run by Subversion. Be sure to ex-
plicitly set any necessary environment variables in your hook program and/or use absolute paths to programs.

o} For security reasons, the Subversion repository executes hook programs with an empty environment—that is, no en-

Subversion executes hooks as the same user who owns the process that is accessing the Subversion repository. In most cases, the
repository is being accessed via a Subversion server, so this user is the same user as whom the server runs on the system. The
hooks themselves will need to be configured with OS-level permissions that allow that user to execute them. Also, this means that
any programs or files (including the Subversion repository) accessed directly or indirectly by the hook will be accessed as the same
user. In other words, be alert to potential permission-related problems that could prevent the hook from performing the tasks it is
designed to perform.

There are several hooks implemented by the Subversion repository, and you can get details about each of them in the section called

150

Repository Administration

“Repository Hooks” in Chapter 9, Subversion Complete Reference. As a repository administrator, you'll need to decide which
hooks you wish to implement (by way of providing an appropriately named and permissioned hook program), and how. When you
make this decision, keep in mind the big picture of how your repository is deployed. For example, if you are using server configur-
ation to determine which users are permitted to commit changes to your repository, you don't need to do this sort of access control
viathe hook system.

There is no shortage of Subversion hook programs and scripts that are freely available either from the Subversion community itself
or elsewhere. These scripts cover a wide range of utility—basic access control, policy adherence checking, issue tracker integra-
tion, email- or syndication-based commit notification, and beyond. Or, if you wish to write your own, see Chapter 8, Embedding
Subversion.

While hook scripts can do almost anything, there is one dimension in which hook script authors should show re-
straint: do not modify a commit transaction using hook scripts. While it might be tempting to use hook scripts to auto-
matically correct errors, shortcomings, or policy violations present in the files being committed, doing so can cause
problems. Subversion keeps client-side caches of certain bits of repository data, and if you change a commit transac-
tion in thisway, those caches become indetectably stale. This inconsistency can lead to surprising and unexpected be-
havior. Instead of modifying the transaction, you should simply validate the transaction in the pr e- conmi t hook
and reject the commit if it does not meet the desired requirements. As a bonus, your users will learn the value of care-
ful, compliance-minded work habits.

Berkeley DB Configuration

A Berkeley DB environment is an encapsulation of one or more databases, lodfiles, region files, and configuration files. The
Berkeley DB environment has its own set of default configuration values for things such as the number of database locks allowed
to be taken out at any given time, the maximum size of the journaling logfiles, and so on. Subversion's filesystem logic additionally
chooses default values for some of the Berkeley DB configuration options. However, sometimes your particular repository, with its
unique collection of data and access patterns, might require a different set of configuration option values.

The producers of Berkeley DB understand that different applications and database environments have different requirements, so
they have provided a mechanism for overriding at runtime many of the configuration values for the Berkeley DB environment.
BDB checks for the presence of afile named DB_CONFI Gin the environment directory (namely, the repository's db subdirectory),
and parses the options found in that file. Subversion itself createsthis file when it creates the rest of the repository. Thefileinitially
contains some default options, as well as pointers to the Berkeley DB online documentation so that you can read about what those
options do. Of course, you are free to add any of the supported Berkeley DB options to your DB_CONFI Gfile. Just be aware that
while Subversion never attempts to read or interpret the contents of the file and makes no direct use of the option settings in it,
you'll want to avoid any configuration changes that may cause Berkeley DB to behave in a fashion that is at odds with what Sub-
version might expect. Also, changes made to DB_CONFI G won't take effect until you recover the database environment (using
svnadmin recover).

FSFS Configuration

As of Subversion 1.6, FSFS filesystems have several configurable parameters which an administrator can use to fine-tune the per-
formance or disk usage of their repositories. You can find these options—and the documentation for them—in the db/
fsfs. conf fileintherepository.

Repository Maintenance

Maintaining a Subversion repository can be daunting, mostly due to the complexities inherent in systems that have a database
backend. Doing the task well is all about knowing the tools—what they are, when to use them, and how. This section will intro-
duce you to the repository administration tools provided by Subversion and discuss how to wield them to accomplish tasks such as
repository data migration, upgrades, backups, and cleanups.

An Administrator's Toolkit

151

Repository Administration

Subversion provides a handful of utilities useful for creating, inspecting, modifying, and repairing your repository. Let's look more
closely at each of those tools. Afterward, we'll briefly examine some of the utilities included in the Berkeley DB distribution that
provide functionality specific to your repository's database backend not otherwise provided by Subversion's own tools.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to create Subversion repositories,
this program allows you to perform several maintenance operations on those repositories. The syntax of svnadmin is similar to that
of other Subversion command-line programs:

$ svnadmin hel p

general usage: svnadm n SUBCOMWAND REPOS PATH [ARGS & OPTIONS ...]
Type 'svnadm n hel p <subcomand>' for help on a specific subcommand.
Type 'svnadmin --version' to see the programversion and FS nodul es.

Avai | abl e subcommands:
crasht est
create
deltify

Previoudly in this chapter (in the section called “ Creating the Repository”), we were introduced to the svnadmin create subcom-
mand. Most of the other svnadmin subcommands we will cover later in this chapter. And you can consult the section called
“svnadmin—Subversion Repository Administration” in Chapter 9, Subversion Complete Reference for a full rundown of subcom-
mands and what each of them offers.

svnlook

svnlook isatool provided by Subversion for examining the various revisions and transactions (which are revisions in the making)
in arepository. No part of this program attempts to change the repository. svnlook is typically used by the repository hooks for re-
porting the changes that are about to be committed (in the case of the pre-commit hook) or that were just committed (in the case of
the post-commit hook) to the repository. A repository administrator may use this tool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnl ook help

general usage: svnl ook SUBCOMVAND REPOS PATH [ARGS & OPTIONS ...]

Not e: any subcomand which takes the '--revision' and '--transaction'
options will, if invoked without one of those options, act on
the repository's youngest revision

Type 'svnl ook hel p <subcommand>'" for help on a specific subconmand.

Type 'svnlook --version' to see the programversion and FS nodul es.

Most of svnlook's subcommands can operate on either arevision or a transaction tree, printing information about the tree itself, or
how it differs from the previous revision of the repository. You usethe--revi sion (-r)and--transacti on (-t) options
to specify which revision or transaction, respectively, to examine. In the absence of both the --revision (-r) and -
-transacti on (-t) options, svnlook will examine the youngest (or HEAD) revision in the repository. So the following two
commands do exactly the same thing when 19 is the youngest revision in the repository located at / var / svn/ r epos:

152

Repository Administration

$ svnl ook info /var/svn/repos
$ svnl ook info /var/svn/repos -r 19

One exception to these rules about subcommands is the svnlook youngest subcommand, which takes no options and simply prints
out the repository's youngest revision number:

$ svnl ook youngest /var/svn/repos
19
$

transactions because transactions are usually either committed (in which case, you should access them as revision

O Keep in mind that the only transactions you can browse are uncommitted ones. Most repositories will have no such
/ withthe- - r evi si on (- r) option) or aborted and removed.

Output from svnlook is designed to be both human- and machine-parsable. Take, as an example, the output of the svnlook info
subcommand:

$ svnl ook info /var/svn/repos

sally

2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27

Added t he usual

3(53' eek tree.

The output of svnlook info consists of the following, in the order given:

1. Theauthor, followed by a newline
2. The date, followed by a newline
3. The number of charactersin the log message, followed by anewline

4. Thelog messageitself, followed by anewline

This output is human-readable, meaning items such as the datestamp are displayed using a textual representation instead of
something more obscure (such as the number of nanoseconds since the Tastee Freez guy drove by). But the output is also machine-
parsable—because the log message can contain multiple lines and be unbounded in length, svnlook provides the length of that
message before the message itself. This allows scripts and other wrappers around this command to make intelligent decisions about
the log message, such as how much memory to allocate for the message, or at least how many bytes to skip in the event that this
output is not the last bit of datain the stream.

svnlook can perform a variety of other queries: displaying subsets of bits of information we've mentioned previously, recursively
listing versioned directory trees, reporting which paths were modified in a given revision or transaction, showing textual and prop-
erty differences made to files and directories, and so on. See the section called “ svnlook—Subversion Repository Examination” in
Chapter 9, Subversion Complete Reference for afull reference of svnlook's features.

153

Repository Administration

svndumpfilter

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides a very particular brand of
useful functionality—the ability to quickly and easily modify streams of Subversion repository history data by acting as a path-
based filter.

The syntax of syndumpfilter isasfollows:

$ svndunpfilter help

general usage: svndunpfilter SUBCOMVAND [ARGS & OPTIONS ...]

Type 'svndunpfilter help <subconmand>' for help on a specific subcomand.
Type 'svndunpfilter --version' to see the program version.

Avai | abl e subcommands:
excl ude
i ncl ude
help (?, h)

There are only two interesting subcommands: svndumpfilter exclude and svndumpfilter include. They alow you to make the
choice between implicit or explicit inclusion of paths in the stream. Y ou can learn more about these subcommands and svndump-
filter's unique purpose later in this chapter, in the section called “Filtering Repository History”.

svnrdump

The svnrdump program is, to put it simply, essentially just network-aware flavors of the svnadmin dump and svnadmin load
subcommands, rolled up into a separate program.

$ svnrdunp hel p

general usage: svnrdunp SUBCOVWWAND URL [-r LOWER : UPPER]]

Type 'svnrdunp hel p <subcomand>' for help on a specific subcomrand.
Type 'svnrdunp --version' to see the program version and RA nodul es.

Avai | abl e subcommands:

dunp
| oad

help (?, h)

We discuss the use of svnrdump and the aforementioned svnadmin commands later in this chapter (see the section called
“Migrating Repository Data Elsewhere”).

svnsync

The svnsync program provides all the functionality required for maintaining a read-only mirror of a Subversion repository. The
program really has one job—to transfer one repository's versioned history into another repository. And while there are few ways to
do that, its primary strength is that it can operate remotely—the “source” and “sink”® repositories may be on different computers
from each other and from svnsync itself.

Asyou might expect, svnsync has a syntax that |ooks very much like every other program we've mentioned in this chapter:

50r isthat, the “sync”?

154

Repository Administration

$ svnsync hel p

general usage: svnsync SUBCOMVAND DEST URL [ARGS & OPTIONS .. .]
Type 'svnsync hel p <subcommand>'" for help on a specific subconmand.
Type 'svnsync --version' to see the programversion and RA nodul es.

Avai | abl e subcomuands:
initialize (init)
synchroni ze (sync)
copy-revprops
info
help (?, h)

Wetalk more about replicating repositories with svnsync later in this chapter (see the section called “ Repository Replication”).

fsfs-reshard.py

While not an official member of the Subversion toolchain, the fsfs-reshard.py script (found inthet ool s/ ser ver - si de direct-
ory of the Subversion source distribution) isa useful performance tuning tool for administrators of FSFS-backed Subversion repos-
itories. As described in the sidebar Revision files and shards, FSFS repositories use individual files to house information about
each revision. Sometimes these files al live in a single directory; sometimes they are sharded across many directories. But the neat
thing isthat the number of directories used to house these files is configurable. That's where fsfs-reshar d.py comesin.

fsfs-reshard.py reshuffles the repository's file structure into a new arrangement that reflects the requested number of sharding sub-
directories and updates the repository configuration to preserve this change. When used in conjunction with the svnadmin up-
grade command, thisis especialy useful for upgrading a pre-1.5 Subversion (unsharded) repository to the latest filesystem format
and sharding its data files (which Subversion will not automatically do for you). This script can also be used for fine-tuning an
already sharded repository.

Berkeley DB utilities

If you're using a Berkeley DB repository, al of your versioned filesystem's structure and data live in a set of database tables within
the db/ subdirectory of your repository. This subdirectory is a regular Berkeley DB environment directory and can therefore be
used in conjunction with any of the Berkeley database tools, typically provided as part of the Berkeley DB distribution.

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed for Subversion repositories
has been duplicated in the svnadmin tool. For example, svnadmin list-unused-dblogs and svhadmin list-dblogs perform a subset
of what is provided by the Berkeley db_archive utility, and svnadmin recover reflects the common use cases of the db_recover
utility.

However, there are still a few Berkeley DB utilities that you might find useful. The db_dump and db_load programs write and
read, respectively, a custom file format that describes the keys and valuesin a Berkeley DB database. Since Berkeley databases are
not portable across machine architectures, this format is a useful way to transfer those databases from machine to machine, irre-
spective of architecture or operating system. As we describe later in this chapter, you can also use svnadmin dump and svnadmin
load for similar purposes, but db_dump and db_load can do certain jobs just as well and much faster. They can also be useful if
the experienced Berkeley DB hacker needs to do in-place tweaking of the datain a BDB-backed repository for some reason, which
is something Subversion's utilities won't allow. Also, the db_stat utility can provide useful information about the status of your
Berkeley DB environment, including detailed statistics about the locking and storage subsystems.

For more information on the Berkeley DB tool chain, visit the documentation section of the Berkeley DB section of Oracle's web
site, located at http://www.oracle.com/technol ogy/documentation/berkel ey-db/db/.

Commit Log Message Correction

155

http://www.oracle.com/technology/documentation/berkeley-db/db/

Repository Administration

Sometimes a user will have an error in her log message (a misspelling or some misinformation, perhaps). If the repository is con-
figured (using the pr e- r evpr op- change hook; see the section called “Implementing Repository Hooks") to accept changes to
this log message after the commit is finished, the user can “fix” her log message remotely using svn propset (see svn propset (pset,
ps) in Chapter 9, Subversion Complete Reference). However, because of the potential to lose information forever, Subversion re-
positories are not, by default, configured to allow changes to unversioned properties—except by an administrator.

If alog message needs to be changed by an administrator, this can be done using svnadmin setlog. This command changes the log
message (thesvn: | og property) on agiven revision of arepository, reading the new value from a provided file.

$ echo "Here is the new, correct |og nessage" > new o0g.txt
$ svnadm n setlog nyrepos new og.txt -r 388

The svnadmin setlog command, by default, is still bound by the same protections against modifying unversioned properties as a
remote client is—the pr e- r evpr op- change and post - r evpr op- change hooks are till triggered, and therefore must be
set up to accept changes of this nature. But an administrator can get around these protections by passing the - - bypass- hooks
option to the svnadmin setlog command.

erty changes, backup systems that track unversioned property changes, and so on. In other words, be very careful

° Remember, though, that by bypassing the hooks, you are likely avoiding such things as email notifications of prop-
about what you are changing, and how you changeit.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usage is still avalid concern for administrators seeking
to version large amounts of data. Every bit of version history information stored in the live repository needs to be backed up else-
where, perhaps multiple times as part of rotating backup schedules. It is useful to know what pieces of Subversion's repository data
need to remain on the live site, which need to be backed up, and which can be safely removed.

How Subversion saves disk space

To keep the repository small, Subversion uses deltification (or delta-based storage) within the repository itself. Ddtification in-
volves encoding the representation of a chunk of data as a collection of differences against some other chunk of data. If the two
pieces of data are very similar, this deltification results in storage savings for the deltified chunk—rather than taking up space equal
to the size of the origina data, it takes up only enough space to say, “I look just like this other piece of data over here, except for
the following couple of changes.” The result is that most of the repository data that tends to be bulky—namely, the contents of ver-
sioned files—is stored at a much smaller size than the original full-text representation of that data.

While deltified storage has been a part of Subversion's design since the very beginning, there have been additional improvements
made over the years. Subversion repositories created with Subversion 1.4 or later benefit from compression of the full-text repres-
entations of file contents. Repositories created with Subversion 1.6 or later further enjoy the disk space savings afforded by repres-
entation sharing, a feature which allows multiple files or file revisions with identical file content to refer to a single shared instance
of that data rather than each having their own distinct copy thereof.

Because all of the data that is subject to deltification in a BDB-backed repository is stored in a single Berkeley DB

/ database file, reducing the size of the stored values will not immediately reduce the size of the database file itself.
Berkeley DB will, however, keep internal records of unused areas of the database file and consume those areas first
before growing the size of the database file. So while deltification doesn't produce immediate space savings, it can
drastically slow future growth of the database.

Removing dead transactions

156

Repository Administration

Though they are uncommon, there are circumstances in which a Subversion commit process might fail, leaving behind in the re-
pository the remnants of the revision-to-be that wasn't—an uncommitted transaction and all the file and directory changes associ-
ated with it. This could happen for several reasons: perhaps the client operation was inelegantly terminated by the user, or a net-
work failure occurred in the middle of an operation. Regardless of the reason, dead transactions can happen. They don't do any real
harm, other than consuming disk space. A fastidious administrator may nonethel ess wish to remove them.

Y ou can use the svnadmin Istxns command to list the names of the currently outstanding transactions:

$ svnadnin | stxns nyrepos
19

3al

a45

$

Each item in the resultant output can then be used with svnlook (and its- - t r ansact i on (- t) option) to determine who created
the transaction, when it was created, what types of changes were made in the transaction—information that is helpful in determin-
ing whether the transaction is a safe candidate for removal! If you do indeed want to remove a transaction, its name can be passed
to svnadmin rmtxns, which will perform the cleanup of the transaction. In fact, svtnadmin rmtxns can take its input directly from
the output of svnadmin Istxns!

$ svnadm n rntxns nyrepos ~svnadm n | stxns nyrepos’
$

If you use these two subcommands like this, you should consider making your repository temporarily inaccessible to clients. That
way, no one can begin a legitimate transaction before you start your cleanup. Example 5.1, “txn-info.sh (reporting outstanding
transactions)” contains a bit of shell-scripting that can quickly generate information about each outstanding transaction in your re-
pository.

Example 5.1. txn-info.sh (reporting outstanding transactions)

#!/ bi n/ sh

Cenerate informational output for all outstanding transactions in
a Subversion repository.

REPOS="${ 1} "

if ["x$REPCS" = x] ; then
echo "usage: $0 REPOS_PATH'
exi t

fi

for TXN in “svnadnin |stxns ${REPCS} ; do

echo "---[Transaction ${TXN} J------mmmmmmmm e "
svnl ook info "${REPOS}" -t "${TXN}"
done

The output of the script is basically a concatenation of several chunks of svnlook info output (see the section called “svnlook”) and
will look something like this:

157

Repository Administration

$ txn-info.sh myrepos
---[Transaction 19 J-----------------““--““-- -

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

---[Transaction 38l J----------mmmm oo
harry

2001- 09- 10 16:50:30 - 0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

---[Transaction adb J---------m oo
sally

2001-09-12 11:09: 28 -0500 (Wed, 12 Sep 2001)

0

$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A transaction's datestamp can provide
interesting information—for example, how likely isit that an operation begun nine months ago is still active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of information—including Apache's error and
access logs, Subversion's operational logs, Subversion revision history, and so on—can be employed in the decision-making pro-
cess. And of course, an administrator can often simply communicate with a seemingly dead transaction's owner (via email, e.g.) to
verify that the transaction is, in fact, in azombie state.

Purging unused Berkeley DB logfiles

Until recently, the largest offender of disk space usage with respect to BDB-backed Subversion repositories were the logfiles in
which Berkeley DB performs its prewrites before modifying the actual database files. These files capture all the actions taken
along the route of changing the database from one state to another—while the database files, at any given time, reflect a particular
state, the logfiles contain all of the many changes along the way between states. Thus, they can grow and accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to remove its own unused log-
files automatically. Any repositories created using svnadmin when compiled against Berkeley DB version 4.2 or later will be con-
figured for this automatic logfile removal. If you don't want this feature enabled, simply passthe - - bdb- | og- keep option to the
svhadmin create command. If you forget to do this or change your mind at alater time, simply edit the DB_ CONFI Gfile found in
your repository's db directory, comment out the line that containsthe set _fl ags DB _LOG_AUTOREMOVE directive, and then
run svnadmin recover on your repository to force the configuration changes to take effect. See the section called “Berkeley DB
Configuration” for more information about database configuration.

Without some sort of automatic logfile removal in place, logfiles will accumulate as you use your repository. Thisis actually some-
what of a feature of the database system—you should be able to recreate your entire database using nothing but the logfiles, so
these files can be useful for catastrophic database recovery. But typicaly, you'll want to archive the logfiles that are no longer in
use by Berkeley DB, and then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs command to list
the unused logfiles:

$ svnadmi n |ist-unused-dbl ogs /var/svn/repos
/var/svn/repos/| og. 0000000031
/var/svn/repos/| og. 0000000032
/var/svn/repos/| og. 0000000033

$ rm ~svnadmin |ist-unused-dbl ogs /var/svn/repos’
di sk space recl ai ned!

158

Repository Administration

BDB-backed repositories whose logfiles are used as part of a backup or disaster recovery plan should not make use of
the logfile autoremoval feature. Reconstruction of a repository's data from logfiles can only be accomplished only
when all the logfiles are available. If some of the logfiles are removed from disk before the backup system has a
chance to copy them elsewhere, the incomplete set of backed-up logfilesis essentially useless.

Packing FSFS filesystems

As described in the sidebar Revision files and shards, FSFS-backed Subversion repositories create, by default, a new on-disk file
for each revision added to the repository. Having thousands of these files present on your Subversion server—even when housed in
separate shard directories—can lead to inefficiencies.

The first problem is that the operating system has to reference many different files over a short period of time. This leads to ineffi-
cient use of disk caches and, as a result, more time spent seeking across large disks. Because of this, Subversion pays a perform-
ance penalty when accessing your versioned data.

The second problem is a bit more subtle. Because of the ways that most filesystems allocate disk space, each file claims more
space on the disk than it actually uses. The amount of extra space required to house a single file can average anywhere from 2 to 16
kilobytes per file, depending on the underlying filesystem in use. This translates directly into a per-revision disk usage penalty for
FSFS-backed repositories. The effect is most pronounced in repositories which have many small revisions, since the overhead in-
volved in storing the revision file quickly outgrows the size of the actual data being stored.

To solve these problems, Subversion 1.6 introduced the svnadmin pack command. By concatenating all the files of a completed
shard into a single “pack” file and then removing the origina per-revision files, svnadmin pack reduces the file count within a
given shard down to just asingle file. In doing so, it aids filesystem caches and reduces (to one) the number of times a file storage
overhead penalty is paid.

Subversion can pack existing sharded repositories which have been upgraded to the 1.6 filesystem format or later (see svnadmin
upgrade) in Chapter 9, Subversion Complete Reference. To do so, just run svnadmin pack on the repository:

$ svnadm n pack /var/svn/repos
Packi ng shard O...done.
Packi ng shard 1...done.
Packi ng shard 2...done.

Packi ng shard 34...done.
Packi ng shard 35...done.
Packi ng shard 36...done.
$

Because the packing process obtains the required locks before doing its work, you can run it on live repositories, or even as part of
a post-commit hook. Repacking packed shardsislegal, but will have no effect on the disk usage of the repository.

svnadmin pack has no effect on BDB-backed Subversion repositories.

Berkeley DB Recovery

As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be left in a frozen state if not closed
properly. When this happens, an administrator needs to rewind the database back into a consistent state. This is unique to BDB-
backed repositories, though—if you are using FSFS-backed ones instead, this won't apply to you. And for those of you using Sub-
version 1.4 with Berkeley DB 4.4 or later, you should find that Subversion has become much more resilient in these types of situ-
ations. Still, wedged Berkeley DB repositories do occur, and an administrator needs to know how to safely deal with this circum-
stance.

159

Repository Administration

To protect the data in your repository, Berkeley DB uses a locking mechanism. This mechanism ensures that portions of the data
base are not simultaneously modified by multiple database accessors, and that each process sees the data in the correct state when
that data is being read from the database. When a process needs to change something in the database, it first checks for the exist-
ence of alock on the target data. If the data is not locked, the process locks the data, makes the change it wants to make, and then
unlocks the data. Other processes are forced to wait until that lock is removed before they are permitted to continue accessing that
section of the database. (This has nothing to do with the locks that you, as a user, can apply to versioned files within the repository;
wetry to clear up the confusion caused by this terminology collision in the sidebar The Three Meanings of “Lock”.)

In the course of using your Subversion repository, fatal errors or interruptions can prevent a process from having the chance to re-
move the locks it has placed in the database. The result is that the backend database system gets “wedged.” When this happens, any
attempts to access the repository hang indefinitely (since each new accessor is waiting for alock to go away—which isn't going to

happen).

If this happens to your repository, don't panic. The Berkeley DB filesystem tak% advantage of database transactions, checkp0| nts,
and prewrite journaling to ensure that only the most catastrophic of events’ can permanently destroy a database environment. A
sufficiently paranoid repository administrator will have made off-site backups of the repository data in some fashion, but don't
head off to the tape backup storage closet just yet.

Instead, use the following recipe to attempt to “unwedge” your repository:

1. Make sure no processes are accessing (or attempting to access) the repository. For networked repositories, this also means shut-
ting down the Apache HTTP Server or svnserve daemon.

2. Become the user who owns and manages the repository. This is important, as recovering a repository while running as the
wrong user can tweak the permissions of the repository's files in such a way that your repository will still be inaccessible even
after it is“unwedged.”

3. Runthecommand svnadmi n recover /var/svn/repos. Youshould see output such asthis:

Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 19.

This command may take many minutes to complete.

4. Restart the server process.

This procedure fixes almost every case of repository wedging. Make sure that you run this command as the user that owns and
manages the database, not just asr oot . Part of the recovery process might involve re-creating from scratch various database files
(shared memory regions, e.g.). Recovering as r oot will create those files such that they are owned by r oot , which means that
even after you restore connectivity to your repository, regular users will be unable to accessit.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should do two things. First, move
your broken repository directory aside (perhaps by renaming it to something like r epos. BROKEN) and then restore your latest
backup of it. Then, send an email to the Subversion users mailing list (at <user s@ubver si on. apache. or g>) describing
your problem in detail. Data integrity is an extremely high priority to the Subversion devel opers.

Migrating Repository Data Elsewhere

"For example, hard drive + huge electromagnet = disaster.

160

Repository Administration

A Subversion filesystem has its data spread throughout files in the repository, in afashion generally understood by (and of interest
to) only the Subversion developers themselves. However, circumstances may arise that call for all, or some subset, of that data to
be copied or moved into another repository.

Subversion provides such functionality by way of repository dump streams. A repository dump stream (often referred to as a
“dump file” when stored as a file on disk) is a portable, flat file format that describes the various revisions in your reposit-
ory—what was changed, by whom, when, and so on. This dump stream is the primary mechanism used to marshal versioned his-
tory—in whole or in part, with or without modification—between repositories. And Subversion provides the tools necessary for
creating and loading these dump streams: the svnadmin dump and svnadmin load subcommands, respectively, and the svnr-
dump program.

an RFC 822 format, the same type of format used for most email), it is not a plain-text file format. It is a binary file
format, highly sensitive to meddling. For example, many text editors will corrupt the file by automatically converting
line endings.

Q While the Subversion repository dump format contains human-readable portions and a familiar structure (it resembles

There are many reasons for dumping and loading Subversion repository data. Early in Subversion's life, the most common reason
was due to the evolution of Subversion itself. As Subversion matured, there were times when changes made to the backend data-
base schema caused compatibility issues with previous versions of the repository, so users had to dump their repository data using
the previous version of Subversion and load it into a freshly created repository with the new version of Subversion. Now, these
types of schema changes haven't occurred since Subversion's 1.0 release, and the Subversion developers promise not to force users
to dump and load their repositories when upgrading between minor versions (such as from 1.3 to 1.4) of Subversion. But there are
still other reasons for dumping and loading, including re-deploying a Berkeley DB repository on a new OS or CPU architecture,
switching between the Berkeley DB and FSFS backends, or (as we'll cover later in this chapter in the section called “Filtering Re-
pository History”) purging versioned data from repository history.

tion about uncommitted transactions, user locks on filesystem paths, repository or server configuration customiza-

Q The Subversion repository dump format describes versioned repository changes only. It will not carry any informa-
/ tions (including hook scripts), and so on.

The Subversion repository dump format also enables conversion from a different storage mechanism or version control system al-
together. Because the dump file format is, for the most part, human-readable, it should be relatively easy to describe generic sets of
changes—each of which should be treated as a new revision—using this file format. In fact, the cvs2svn utility (see the section
called “ Converting a Repository from CVS to Subversion”) uses the dump format to represent the contents of a CV'S repository so
that those contents can be copied into a Subversion repository.

For now, we'll concern ourselves only with migration of repository data between Subversion repositories, which we'll describe in
detail in the sections which follow.

Repository data migration using svhadmin

Whatever your reason for migrating repository history, using the svnadmin dump and svnadmin load subcommands is straight-
forward. svnadmin dump will output a range of repository revisions that are formatted using Subversion's custom filesystem
dump format. The dump format is printed to the standard output stream, while informative messages are printed to the standard er-
ror stream. This allows you to redirect the output stream to a file while watching the status output in your terminal window. For ex-
ample:

$ svnl ook youngest mnyrepos

26

$ svnadni n dunp nyrepos > dunpfile
* Dunped revision O.

* Dunped revision 1.

* Dunped revision 2.

161

Repository Administration

* Dunped revi sion 25.
* Dunped revision 26.

At the end of the process, you will have asingle file (dunpf i | e in the previous example) that contains all the data stored in your
repository in the requested range of revisions. Note that svnadmin dump is reading revision trees from the repository just like any
other “reader” process would (e.g., svn checkout), so it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion repository dump file and ef-
fectively replays those dumped revisions into the target repository for that operation. It also gives informative feedback, this time
using the standard output stream:

$ svnadnmin | oad new epos < dunpfile

<<< Started new txn, based on original revision 1
* adding path : A ... done.
* adding path : A/B ... done.

~------ Committed new rev 1 (l oaded fromoriginal rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A/nu ... done.
* editing path : ADGrho ... done.

------- Committed new rev 2 (loaded fromoriginal rev 2) >>>

<<< Started new txn, based on original revision 25
* editing path : AD/'gamma ... done.

——————— Conmitted new rev 25 (|l oaded fromoriginal rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/ Z/zeta ... done.
* editing path : A/nu ... done.

------- Conmitted new rev 26 (|l oaded fromoriginal rev 26) >>>

The result of aload is new revisions added to a repository—the same thing you get by making commits against that repository
from aregular Subversion client. Just as in a commit, you can use hook programs to perform actions before and after each of the
commits made during a load process. By passing the - - use- pr e- comnri t - hook and - - use- post - conmi t - hook options
to svnadmin load, you can instruct Subversion to execute the pre-commit and post-commit hook programs, respectively, for each
loaded revision. Y ou might use these, for example, to ensure that loaded revisions pass through the same validation steps that regu-
lar commits pass through. Of course, you should use these options with care—if your post-commit hook sends emails to a mailing
list for each new commit, you might not want to spew hundreds or thousands of commit emailsin rapid succession at that list! You
can read more about the use of hook scriptsin the section called “Implementing Repository Hooks'.

Note that because svnadmin uses standard input and output streams for the repository dump and load processes, people who are
feeling especially saucy can try things such as this (perhaps even using different versions of svnadmin on each side of the pipe):

$ svnadnin create new epos _
$ svnadm n dunp ol drepos | svnadmi n | oad new epos

162

Repository Administration

By default, the dump file will be quite large—much larger than the repository itself. That's because by default every version of
every file is expressed as a full text in the dump file. This is the fastest and simplest behavior, and it's nice if you're piping the
dump data directly into some other process (such as a compression program, filtering program, or loading process). But if you're
creating a dump file for longer-term storage, you'll likely want to save disk space by using the - - del t as option. With this op-
tion, successive revisions of files will be output as compressed, binary differences—just as file revisions are stored in arepository.
This option is slower, but it resultsin a dump file much closer in size to the original repository.

We mentioned previously that svnadmin dump outputs a range of revisions. Use the - - r evi si on (-r) option to specify a
single revision, or arange of revisions, to dump. If you omit this option, all the existing repository revisions will be dumped.

$ svnadmi n dunp nyrepos -r 23 > rev-23.dunpfile
$ svnadmi n dunp nyrepos -r 100: 200 > revs-100-200. dunpfile

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to re-create that revision
based on the previous one. In other words, for any given revision in the dump file, only the items that were changed in that revision
will appear in the dump. The only exception to this rule is the first revision that is dumped with the current svnadmin dump com-
mand.

By default, Subversion will not express the first dumped revision as merely differences to be applied to the previous revision. For
one thing, there is no previous revision in the dump file! And second, Subversion cannot know the state of the repository into
which the dump data will be loaded (if it ever is). To ensure that the output of each execution of svnadmin dump is self-sufficient,
the first dumped revision is, by default, afull representation of every directory, file, and property in that revision of the repository.

However, you can change this default behavior. If you add the - - i ncr enent al option when you dump your repository, svhad-
min will compare the first dumped revision against the previous revision in the repository—the same way it treats every other revi-
sion that gets dumped. It will then output the first revision exactly as it does the rest of the revisions in the dump
range—mentioning only the changes that occurred in that revision. The benefit of this is that you can create several small dump
files that can be loaded in succession, instead of one large one, like so:

$ svnadm n dunp nmyrepos -r 0:1000 > dunpfilel
$ svnadmi n dunp myrepos -r 1001: 2000 --incremental > dunpfile2
$ svnadm n dunp myrepos -r 2001: 3000 --increnmental > dunpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadm n | oad new epos < dunpfilel
$ svnadm n | oad new epos < dunpfile2
$ svnadm n | oad new epos < dunpfile3

Another neat trick you can perform with this- - i ncr ement al option involves appending to an existing dump file a new range of
dumped revisions. For example, you might have apost - conmi t hook that simply appends the repository dump of the single re-
vision that triggered the hook. Or you might have a script that runs nightly to append dump file data for all the revisions that were
added to the repository since the last time the script ran. Used like this, svnadmin dump can be one way to back up changes to
your repository over timein case of a system crash or some other catastrophic event.

163

Repository Administration

The dump format can aso be used to merge the contents of several different repositories into a single repository. By using the -

- parent - di r option of svnadmin load, you can specify a new virtual root directory for the load process. That means if you
have dump files for three repositories—say cal c- dunpfi |l e, cal - dunpfil e, and ss- dunpfi | e—you can first create a
new repository to hold them all:

$ svnadmi n create /var/svn/projects
$

Then, make new directories in the repository that will encapsulate the contents of each of the three previous repositories:

$ svn nkdir -m"Initial project roots" \
file://lvar/svn/projects/calc \
file://llvar/svn/projects/cal endar \
file://lvar/svn/projects/spreadsheet
gomﬁtted revision 1.

Lastly, load the individual dump filesinto their respective locations in the new repository:

$ svnadm n load /var/svn/projects --parent-dir calc < cal c-dunpfile
$ svnadnin | oad /var/svn/ projects --parent-dir cal endar < cal-dunpfile
$ svnadnin | oad /var/svn/ projects --parent-dir spreadsheet < ss-dunpfile

Repository data migration using svnrdump

In Subversion 1.7, svnrdump joined the set of stock Subversion tools. It offers fairly specialized functionality, essentially as a net-
work-aware version of the svnadmin dump and svhadmin load commands which we discuss in depth in the section called
“Repository data migration using svnadmin”. svnrdump dump will generate a dump stream from a remote repository, spewing it
to standard output; svnrdump load will read a dump stream from standard input and load it into a remote repository. Using svnr-
dump, you can generate incremental dumps just as you might with svnadmin dump. Y ou can even dump a subtree of the reposit-
ory—something that svnadmin dump cannot do.

The primary difference is that instead of requiring direct access to the repository, svnrdump operates remotely, using the very
same Repository Access (RA) protocols that the Subversion client does. As such, you might need to provide authentication creden-
tials. Also, your remote interations are subject to any authorization limitations configured on the Subversion server.

svhrdump dump requires that the remote server be running Subversion 1.4 or newer. It currently generates dump

/ streams only of the sort which are created when you pass the - - del t as option to svnadmin dump. Thisisn't inter-
esting in the typical use-cases, but might impact specific types of custom transformations you might wish to apply to
the resulting dump stream.

164

Repository Administration

itory have revision property changes enabled via the pre-revprop-change hook. See pre-revprop-change in Chapter 9,

<> Because it modifies revision properties after committing new revisions, svnrdump load requires that the target repos-
/ Subversion Compl ete Reference for details.

As you might expect, you can use svnadmin and svnrdump in concert. Y ou can, for example, use svnrdump dump to generate a
dump stream from aremote repository, and pipe the results thereof through svnadmin load to copy all that repository history into a
local repository. Or you can do the reverse, copying history from alocal repository into a remote one.

By usingfil e:// URLs, svnrdump can also access local repositories, but it will be doing so via Subversion's Re-
_') pository Access (RA) abstraction layer—you'll get better performance out of svnadmin in such situations.

Filtering Repository History

Since Subversion stores your versioned history using, at the very least, binary differencing algorithms and data compression
(optionally in a completely opaque database system), attempting manual tweaks is unwise if not quite difficult, and at any rate
strongly dlscouraged And once data has been stored in your repository, Subversion generally doesn't provide an easy way to re-
move that data.® But inevitably, there will be times when you would like to manipulate the history of your repository. Y ou might
need to strip out all instances of afile that was accidentally added to the repository (and shouldn't be there for whatever reason). o
Or, perhaps you have multiple projects sharing a single repository, and you decide to split them up into their own repositories. To
accomplish tasks such as these, administrators need a more manageable and malleable representation of the data in their repositor-
ies—the Subversion repository dump format.

As we described earlier in the section called “Migrating Repository Data Elsewhere”, the Subversion repository dump format is a
human-readable representation of the changes that you've made to your versioned data over time. Use the svnadmin dump or svn-
rdump dump command to generate the dump data, and svnadmin load or svnrdump load to populate a new repository with it.
The great thing about the human-readability aspect of the dump format is that, if you aren't careless about it, you can manualy in-
spect and modify it. Of course, the downside is that if you have three years worth of repository activity encapsulated in what is
likely to be avery large dump file, it could take you along, long time to manually inspect and modify it.

That's where svndumpfilter becomes useful. This program acts as a path-based filter for repository dump streams. Simply give it
either alist of paths you wish to keep or alist of paths you wish to not keep, and then pipe your repository dump data through this
filter. The result will be a modified stream of dump data that contains only the versioned paths you (explicitly or implicitly) reques-
ted.

Let'slook at arealistic example of how you might use this program. Earlier in this chapter (see the section called “Planning Y our
Repository Organization”), we discussed the process of deciding how to choose a layout for the data in your repositories—using
one repository per project or combining them, arranging stuff within your repository, and so on. But sometimes after new revisions
start flying in, you rethink your layout and would like to make some changes. A common change is the decision to move multiple
projects that are sharing a single repository into separate repositories for each project.

Our imaginary repository contains three projects: cal ¢, cal endar, and spr eadsheet . They have been living side-by-side in
alayout like this:

/
cac/
trunk/
branches/
tags/
calendar/

8That's rather the reason you use version control at all, right?
Conscious, cautious removal of certain bits of versioned data is actually supported by real use cases. That's why an “obliterate” feature has been one of the most
highly requested Subversion features, and one which the Subversion devel opers hope to soon provide.

165

Repository Administration

trunk/
branches/
tagy/
spreadsheet/
trunk/
branches/

tags/
To get these three projects into their own repositories, we first dump the whole repository:

svnadm n dunp /var/svn/repos > repos-dunmpfile
Dunped revi sion
Dunped revi si on
Dunped revi si on
Dunped revi si on

* % X X ep
wh=Oo

©h:

Next, run that dump file through the filter, each time including only one of our top-level directories. This resultsin three new dump
files:

$ svndunpfilter include calc < repos-dunpfile > cal c-dunpfile
$ svndunpfilter include cal endar < repos-dunpfile > cal-dunpfile
$ svndunpfilter include spreadsheet < repos-dumpfile > ss-dunpfile

At this point, you have to make a decision. Each of your dump files will create a valid repository, but will preserve the paths ex-
actly as they were in the original repository. This means that even though you would have a repository solely for your cal ¢
project, that repository would still have a top-level directory named cal c. If you want your t r unk, t ags, and br anches dir-
ectories to live in the root of your repository, you might wish to edit your dump files, tweaking the Node- pat h and Node-
copyf r om pat h headers so that they no longer have that first cal ¢/ path component. Also, you'll want to remove the section
of dump data that createsthe cal ¢ directory. It will look something like the following:

Node- path: calc
Node- acti on: add
Node- ki nd: dir
Content-length: O

If you do plan on manually editing the dump file to remove a top-level directory, make sure your editor is not set to
automatically convert end-of-line characters to the native format (e.g., \ r \ n to\ n), as the content will then not agree
with the metadata. Thiswill render the dump file useless.

166

Repository Administration

All that remains now isto create your three new repositories, and load each dump file into the right repository, ignoring the UUID
found in the dump stream:

$ svnadnin create calc

$ svnadmn load --ignore-uuid calc < cal c-dunpfile

<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : button.c ... done.

$ svnadmi n create cal endar

$ svnadmin |load --ignore-uuid cal endar < cal -dunpfile

<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : cal.c ... done.

$ svnadm n create spreadsheet
$ svnadm n |l oad --ignore-uui d spreadsheet < ss-dunpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : ss.c ... done.

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions. If a given revision con-
tains only changes to paths that were filtered out, that now-empty revision could be considered uninteresting or even unwanted. So
to give the user control over what to do with those revisions, svndumpfilter provides the following command-line options:

--drop-enpty-revs
Do not generate empty revisions at all—just omit them.

- -renunber-revs
If empty revisions are dropped (using the - - dr op- enpt y- r evs option), change the revision numbers of the remaining re-
visions so that there are no gaps in the numeric sequence.

--preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom properties, etc.) for
those empty revisions. Otherwise, empty revisions will contain only the original datestamp, and a generated log message that
indicates that this revision was emptied by svndumpfilter.

While svndumpfilter can be very useful and a huge timesaver, there are unfortunately a couple of gotchas. First, this utility is
overly sensitive to path semantics. Pay attention to whether paths in your dump file are specified with or without leading slashes.
You'll want to look at the Node- pat h and Node- copyf r omt pat h headers.

Node- pat h: spreadsheet/ Makefil e

If the paths have leading slashes, you should include leading slashes in the paths you pass to svndumpfilter include and svn-
dumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file has an inconsistent usage of leading slashes for
some reason,*® you should probably normalize those paths so that they all have, or all lack, leading slashes.

Owhile svnadmin dump has a consistent leading slash policy (to not include them), other programs that generate dump data might not be so consistent.

167

Repository Administration

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository, where a new path is created
by copying some already existing path. It is possible that at some point in the lifetime of your repository, you might have copied a
file or directory from some location that svndumpfilter is excluding, to alocation that it isincluding. To make the dump data self-
sufficient, svndumpfilter needs to still show the addition of the new path—including the contents of any files created by the
copy—and not represent that addition as a copy from a source that won't exist in your filtered dump data stream. But because the
Subversion repository dump format shows only what was changed in each revision, the contents of the copy source might not be
readily available. If you suspect that you have any copies of this sort in your repository, you might want to rethink your set of in-
cluded/excluded paths, perhaps including the paths that served as sources of your troublesome copy operations, too.

Finaly, svndumpfilter takes path filtering quite literally. If you are trying to copy the history of a project rooted at t r unk/

nmy- pr oj ect and moveit into arepository of its own, you would, of course, use the syndumpfilter include command to keep all
the changes in and under t r unk/ my- pr oj ect . But the resultant dump file makes no assumptions about the repository into
which you plan to load this data. Specifically, the dump data might begin with the revision that added the t r unk/ my- pr oj ect

directory, but it will not contain directives that would create thet r unk directory itself (becauset r unk doesn't match the include
filter). You'll need to make sure that any directories that the new dump stream expects to exist actually do exist in the target repos-
itory before trying to load the stream into that repository.

Repository Replication

There are several scenarios in which it is quite handy to have a Subversion repository whose version history is exactly the same as
some other repository's. Perhaps the most obvious one is the maintenance of a simple backup repository, used when the primary re-
pository has become inaccessible due to a hardware failure, network outage, or other such annoyance. Other scenarios include de-
ploying mirror repositories to distribute heavy Subversion load across multiple servers, use as a soft-upgrade mechanism, and so
on.

Subversion provides a program for managing scenarios such as these. svnsync works by essentially asking the Subversion server to
“replay” revisions, one at a time. It then uses that revision information to mimic a commit of the same to another repository.
Neither repository needs to be locally accessible to the machine on which svnsync is running—its parameters are repository URLS,
and it does all its work through Subversion's Repository Access (RA) interfaces. All it requiresis read access to the source reposit-
ory and read/write access to the destination repository.

When using svhsync against a remote source repository, the Subversion server for that repository must be running
/ Subversion version 1.4 or later.

Replication with svnsync

Assuming you aready have a source repository that you'd like to mirror, the next thing you need is a target repository that will ac-
tually serve as that mirror. This target repository can use either of the available filesystem data-store backends (see the section
called “Choosing a Data Store”)—Subversion's abstraction layers ensure that such details don't matter. But by default, it must not
yet have any version history init. (Well discuss an exception to this later in this section.)

The protocol that svnsync uses to communicate revision information is highly sensitive to mismatches between the versioned his-
tories contained in the source and target repositories. For this reason, while svnsync cannot demand that the target repository be
read-only,ll allowing the revision history in the target repository to change by any mechanism other than the mirroring processis a
recipe for disaster.

Do not modify amirror repository in such away asto cause its version history to deviate from that of the repository it
mirrors. The only commits and revision property modifications that ever occur on that mirror repository should be
those performed by the svnsync tool.

Another requirement of the target repository is that the svnsync process be alowed to modify revision properties. Because svnsync
works within the framework of that repository's hook system, the default state of the repository (which isto disallow revision prop-

N fact, it can't truly be read-only, or svnsync itself would have a tough time copying revision history into it.

168

Repository Administration

erty changes; see pre-revprop-change in Chapter 9, Subversion Complete Reference) isinsufficient. You'll need to explicitly imple-
ment the pre-revprop-change hook, and your script must allow svnsync to set and change revision properties. With those provi-
sionsin place, you are ready to start mirroring repository revisions.

It's a good idea to implement authorization measures that allow your repository replication process to perform its
_') tasks while preventing other users from modifying the contents of your mirror repository at all.

Let's walk through the use of svnsync in a somewhat typical mirroring scenario. We'll pepper this discourse with practical recom-
mendations, which you are free to disregard if they aren't required by or suitable for your environment.

We will be mirroring the public Subversion repository which houses the source code for this very book and exposing that mirror
publicly on the Internet, hosted on a different machine than the one on which the original Subversion source code repository lives.
This remote host has a global configuration that permits anonymous users to read the contents of repositories on the host, but re-
quires users to authenticate to modify those repositories. (Please forgive us for glossing over the details of Subversion server con-
figuration for the moment—those are covered thoroughly in Chapter 6, Server Configuration.) And for no other reason than that it
makes for a more interesting example, we'll be driving the replication process from a third machine—the one that we currently find
ourselves using.

First, we'll create the repository which will be our mirror. This and the next couple of steps do require shell access to the machine
on which the mirror repository will live. Once the repository is all configured, though, we shouldn't need to touch it directly again.

$ ssh admi n@vn. exanpl e. com "svnadni n create /var/svn/svn-nmirror"
adm n@vn. exanpl e. conl s password: *******x*
$

At this point, we have our repository, and due to our server's configuration, that repository is now “live” on the Internet. Now, be-
cause we don't want anything modifying the repository except our replication process, we need a way to distinguish that process
from other would-be committers. To do so, we use a dedicated username for our process. Only commits and revision property
modifications performed by the special username syncuser will be allowed.

WEe'll use the repository's hook system both to allow the replication process to do what it needs to do and to enforce that only it is
doing those things. We accomplish this by implementing two of the repository event hooks—pre-revprop-change and start-commit.
Our pr e-r evpr op- change hook script is found in Example 5.2, “Mirror repository's pre-revprop-change hook script”, and ba-
sically verifies that the user attempting the property changesis our syncuser user. If so, the change is allowed; otherwise, it is
denied.

Example5.2. Mirror repository's pre-revprop-change hook script

#!/ bin/sh
USER:II $3II
if ["$USER' = "syncuser"]; then exit 0; fi

echo "Only the syncuser user nmay change revision properties" >&2
exit 1

That covers revision property changes. Now we need to ensure that only the syncuser user is permitted to commit new revisions
to the repository. We do thisusing a st art-comi t hook script such as the one in Example 5.3, “Mirror repository's start-
commit hook script”.

169

Repository Administration

Example5.3. Mirror repository's start-commit hook script

#!/ bin/ sh
USER=" $2"
if ["$USER' = "syncuser"]; then exit 0; fi

echo "Only the syncuser user nmay conmmit new revisions" >&2
exit 1

After installing our hook scripts and ensuring that they are executable by the Subversion server, we're finished with the setup of the
mirror repository. Now, we get to actually do the mirroring.

The first thing we need to do with svnsync is to register in our target repository the fact that it will be amirror of the source repos-
itory. We do this using the svnsync initialize subcommand. The URLSs we provide point to the root directories of the target and
source repositories, respectively. In Subversion 1.4, this is required—only full mirroring of repositories is permitted. Beginning
with Subversion 1.5, though, you can use svnsync to mirror only some subtree of the repository, too.

$ svnsync help init
initialize (init): usage: svnsync initialize DEST _URL SOURCE URL

Initialize a destination repository for synchronization from
anot her repository.

$ svnsync initialize http://svn.exanple.com svn-mrror \
htt p://svnbook. googl ecode. com svn \
--Sync- usernanme syncuser --sync-password syncpass
Copi ed properties for revision 0 (svn:sync-* properties skipped).
gOTE: Normal i zed svn:* properties to LF line endings (1 rev-props, O node-props).

Our target repository will now remember that it is a mirror of the public Subversion source code repository. Notice that we
provided a username and password as arguments to svnsync—that was required by the pre-revprop-change hook on our mirror re-
pository.

In Subversion 1.4, the values given to svnsync's - - user name and - - passwor d command-line options were used
/ for authentication against both the source and destination repositories. This caused problems when a user's credentials
weren't exactly the same for both repositories, especially when running in noninteractive mode (with the -
-non-interacti ve option). This was fixed in Subversion 1.5 with the introduction of two new pairs of options.
Use - - sour ce- user name and - - sour ce- passwor d to provide authentication credentials for the source re-
pository; use - - sync- user namne and - - sync- passwor d to provide credentials for the destination repository.
(Theold - - user name and - - passwor d options still exist for compatibility, but we advise against using them.)

And now comes the fun part. Wlth a single subcommand, we can tell svnsync to copy all the as-yet-unmirrored revisions from the
source repository to the target 2 The svnsync synchronize subcommand will peek into the special revision properties previously
stored on the target repository and determine how much of the source repository has been previously mirrored—in this case, the

12Be forewarned that while it will take only afew seconds for the average reader to parse this paragraph and the sample output that follows it, the actual time re-
quired to complete such amirroring operation is, shall we say, quite a bit longer.

170

Repository Administration

most recently mirrored revision is r0. Then it will query the source repository and determine what the latest revision in that reposit-
ory is. Finaly, it asks the source repository's server to start replaying all the revisions between 0 and that latest revision. As svn-
sync gets the resultant response from the source repository's server, it begins forwarding those revisions to the target repository's
Server as hew commits.

$ svnsync hel p synchroni ze
synchroni ze (sync): usage: svnsync synchroni ze DEST _URL [SOURCE URL]

Transfer all pending revisions to the destination fromthe source
with which it was initialized.

$ svnsync synchroni ze http://svn. exanple.confsvn-mrror \
htt p: // svnbook. googl ecode. coni svn

Committed revision 1.

Copi ed properties for revision 1.

Committed revision 2.

Copi ed properties for revision 2.

Transmitting file data .

Conmitted revision 3.

Copi ed properties for revision 3.

Transmitting file data .

Committed revision 4063.

Copi ed properties for revision 4063.
Transmitting file data .

Committed revision 4064.

Copi ed properties for revision 4064.
Transmitting file data
Conmmitted revision 4065.

gopi ed properties for revision 4065.

Of particular interest here is that for each mirrored revision, there is first acommit of that revision to the target repository, and then
property changes follow. This is because the initial commit is performed by (and attributed to) the user syncuser, and it is
datestamped with the time as of that revision's creation. Also, Subversion's underlying repository access interfaces don't provide a
mechanism for setting arbitrary revision properties as part of a commit. So svnsync follows up with an immediate series of prop-
erty modifications that copy into the target repository all the revision properties found for that revision in the source repository.
This also has the effect of fixing the author and datestamp of the revision to match that of the source repository.

Also noteworthy is that svnsync performs careful bookkeeping that allows it to be safely interrupted and restarted without ruining
the integrity of the mirrored data. If a network glitch occurs while mirroring a repository, simply repeat the svnsync synchronize
command, and it will happily pick up right where it left off. In fact, as new revisions appear in the source repository, thisis exactly
what you do to keep your mirror up to date.

Because of this, invocations of svnsync which follow the initialization step do not require that you provide the source
URL on the command line again. However, for security purposes, we recommend that you continue to do so. De-
pending on how it is deployed, it may not be safe for svnsync to trust the source URL which it retrieves from the mir-
ror repository, and from which it pulls versioned data.

Q As part of its bookkeeping, svnsync records in the mirror repository the URL with which the mirror was initialized.

svnsync Bookkeeping

svnhsync needs to be able to set and modify revision properties on the mirror repository because those properties are part of
the data it is tasked with mirroring. As those properties change in the source repository, those changes need to be reflected in
the mirror repository, too. But svnsync also uses a set of custom revision properties—stored in revision O of the mirror re-

171

Repository Administration

pository—for its own internal bookkeeping. These properties contain information such as the URL and UUID of the source
repository, plus some additional state-tracking information.

One of those pieces of state-tracking information is a flag that essentially just means “there's a synchronization in progress
right now.” Thisis used to prevent multiple svnsync processes from colliding with each other while trying to mirror data to
the same destination repository. Now, generally you won't need to pay any attention whatsoever to any of these special prop-
erties (all of which begin with the prefix svn: sync-). Occasionally, though, if a synchronization fails unexpectedly, Sub-
version never has a chance to remove this particular state flag. This causes all future synchronization attempts to fail because
it appears that a synchronization is still in progress when, in fact, none is. Fortunately, recovering from this situation is easy
to do. In Subversion 1.7, you can use the newly introduced - - st eal - | ock option with svnsync's commands. In previous
Subversion versions, you need only to remove the svn: sync- | ock property which serves as this flag from revision O of
the mirror repository:

$ svn propdel --revprop -r0 svn:sync-lock http://svn. exanpl e.conf svn-mrror
property 'svn:sync-lock' deleted fromrepository revision O
$

Also, svnsync stores the source repository URL provided at mirror initialization time in a bookkeeping property on the mir-
ror repository. Future synchronization operations against that mirror which omit the source URL at the command line will
consult the special svn: sync-from url property stored on the mirror itself to know where to synchronize from. This
value is used literally by the synchronization process, though. Be wary of using non-fully-qualified domain names (such as
referring to svnbook. r ed- bean. comas simply svnbook because that happens to work when you are connected dir-
ectly to the r ed- bean. comnetwork), domain names which don't resolve or resolve differently depending on where you
happen to be operating from, or | P addresses (which can change over time). But here again, if you need an existing mirror to
start referring to a different URL for the same source repository, you can change the bookkeeping property which houses that
information. Users of Subversion 1.7 or better can use svhsync init --allow-non-empty to reinitialize their mirrors with new
source URL:

$ svnsync initialize --allownon-enpty http://svn.exanpl e.com svn-mrror \
NEW SOURCE- URL

Copi ed properties for revision 4065.

$

If you are running an older version of Subversion, you'll need to manually tweak the svn: sync-from url| bookkeeping
property:

$ svn propset --revprop -r0 svn:sync-fromurl NEW SOURCE- URL \
http://svn. exanpl e. conf svn-mirror

property 'svn:sync-fromurl' set on repository revision O

$

Another interesting thing about these special bookkeeping properties is that svnsync will not attempt to mirror any of those
properties when they are found in the source repository. The reason is probably obvious, but basically boils down to svnsync
not being able to distinguish the special propertiesit has merely copied from the source repository from those it needs to con-
sult and maintain for its own bookkeeping needs. This situation could occur if, for example, you were maintaining a mirror
of a mirror of a third repository. When svnsync sees its own special properties in revision 0 of the source repository, it
simply ignores them.

172

Repository Administration

An svnsync info subcommand was added in Subversion 1.6 to easily display the special bookkeeping properties in the des-
tination repository.

$ svnsync help info
i nfo: usage: svnsync info DEST URL

Print information about the synchronization destination repository
| ocated at DEST_URL.

$ svnsync info http://svn.exanpl e.conl svn-mrror

Source URL: http://svnbook. googl ecode. com svn

Source Repository UUI D: 931749d0- 5854- 0410- 9456- f 14be4d6b398
Iéast Merged Revision: 4065

There is, however, one bit of inelegance in the process. Because Subversion revision properties can be changed at any time
throughout the lifetime of the repository, and because they don't leave an audit trail that indicates when they were changed, replica
tion processes have to pay special attention to them. If you've already mirrored the first 15 revisions of a repository and someone
then changes a revision property on revision 12, svnsync won't know to go back and patch up its copy of revision 12. You'll need
to tell it to do so manually by using (or with some additional tooling around) the svnsync copy-revprops subcommand, which
simply rereplicates all the revision properties for a particular revision or range thereof.

$ svnsync hel p copy-revprops
COpy-revprops: usage:

1. svnsync copy-revprops DEST URL [SOURCE URL]
2. svnsync copy-revprops DEST _URL REV][: REV2]

$ svnsync copy-revprops http://svn.exanpl e.confsvn-mirror 12
gopi ed properties for revision 12.

That's repository replication via svnsync in a nutshell. You'll likely want some automation around such a process. For example,
while our example was a pull-and-push setup, you might wish to have your primary repository push changes to one or more
blessed mirrors as part of its post-commit and post-revprop-change hook implementations. This would enable the mirror to be up to
date in as near to real time asislikely possible.

Partial replication with svnsync

svnsync isn't limited to full copies of everything which livesin arepository. It can handle various shades of partial replication, too.
For example, while it isn't very commonplace to do so, svnsync does gracefully mirror repositories in which the user as whom it
authenticates has only partial read access. It simply copies only the bits of the repository that it is permitted to see. Obviously, such
amirror is not useful as a backup solution.

As of Subversion 1.5, svnsync also has the ability to mirror a subset of a repository rather than the whole thing. The process of set-
ting up and maintaining such a mirror is exactly the same as when mirroring a whole repository, except that instead of specifying
the source repository's root URL when running svnsync init, you specify the URL of some subdirectory within that repository.
Synchronization to that mirror will now copy only the bits that changed under that source repository subdirectory. There are some
limitations to this support, though. First, you can't mirror multiple digoint subdirectories of the source repository into a single mir-

173

Repository Administration

ror repository—you'd need to instead mirror some parent directory that is common to both. Second, the filtering logic is entirely
path-based, so if the subdirectory you are mirroring was renamed at some point in the past, your mirror would contain only the re-
visions since the directory appeared at the URL you specified. And likewise, if the source subdirectory is renamed in the future,
your synchronization processes will stop mirroring data at the point that the source URL you specified is no longer valid.

A quick trick for mirror creation

We mentioned previously the cost of setting up an initial mirror of an existing repository. For many folks, the sheer cost of trans-
mitting thousands—or millions—of revisions of history to a new mirror repository via svnsync is a show-stopper. Fortunately,
Subversion 1.7 provides a workaround by way of anew - - al | ow non- enpt y option to svnsync initialize. This option allows
you to initialize one repository as a mirror of another while bypassing the verification that the to-be-initialized mirror has no ver-
sion history present in it. Per our previous warnings about the sensitivity of this whole replication process, you should rightly dis-
cern that thisis an option to be used only with great caution. But it's wonderfully handy when you have administrative access to the
source repository, where you can simply make a physical copy of the repository and then initialize that copy as a new mirror:

$ svnadm n hotcopy /path/to/repos /path/to/ mrror-repos
$ ### create /path/to/ mrror-repos/hooks/ pre-revprop-change
$ svnsync initialize file:///path/to/mrror-repos \
file:///path/tolrepos
svnsync: EO000022: Destination repository already contains revision history; co
nsider using --allownon-enpty if the repository's revisions are known to mrr
or their respective revisions in the source repository
$ svnsync initialize --allownon-enpty file:///path/to/mrror-repos \
file:///lpath/tolrepos
gopied properties for revision 32042.

Admins who are running a version of Subversion prior to 1.7 (and thus do not have access to svnsync initialize's -
-al | ow non- enpt y feature) can accomplish effectively the same thing that that feature does through careful manipulation of
the r0 revision properties on the copy of the repository which is slated to become a mirror of the original. Use svnadmin setrev-
prop to create the same bookkeeping properties that svnsync would have created there.

Replication wrap-up

We've discussed a couple of ways to replicate revision history from one repository to another. So let's look now at the user end of
these operations. How does replication and the various situations which call for it affect Subversion clients?

As far as user interaction with repositories and mirrors goes, it is possible to have a single working copy that interacts with both,
but you'll have to jump through some hoops to make it happen. First, you need to ensure that both the primary and mirror repositor-
ies have the same repository UUID (which is not the case by default). See the section called “Managing Repository UUIDS’ later
in this chapter for more about this.

Once the two repositories have the same UUID, you can use svn relocate to point your working copy to whichever of the reposit-
ories you wish to operate against, a process that is described in svn relocate in Chapter 9, Subversion Complete Reference. Thereis
a possible danger here, though, in that if the primary and mirror repositories aren't in close synchronization, a working copy up to
date with, and pointing to, the primary repository will, if relocated to point to an out-of-date mirror, become confused about the ap-
parent sudden loss of revisions it fully expects to be present, and it will throw errors to that effect. If this occurs, you can relocate
your working copy back to the primary repository and then either wait until the mirror repository is up to date, or backdate your
working copy to arevision you know is present in the sync repository, and then retry the relocation.

Finally, be aware that the revision-based replication provided by svnsync is only that—replication of revisions. Only the kinds of
information carried by the Subversion repository dump file format are available for replication. As such, tools such as svnsync
(and svnrdump, which we discuss in the section called “ Repository data migration using svnrdump”) are limited in ways similar to
that of the repository dump stream. They do not include in their replicated information such things as the hook implementations,
repository or server configuration data, uncommitted transactions, or information about user locks on repository paths.

174

Repository Administration

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortunately rings true with crystal-
line clarity—sometimes things go very, very awry. Power outages, network connectivity dropouts, corrupt RAM, and crashed hard
drives are but ataste of the evil that Fate is poised to unleash on even the most conscientious administrator. And so we arrive at a
very important topic—how to make backup copies of your repository data.

There are two types of backup methods available for Subversion repository administrators—full and incremental. A full backup of
the repository involves squirreling away in one sweeping action all the information required to fully reconstruct that repository in
the event of a catastrophe. Usually, it means, quite literally, the duplication of the entire repository directory (which includes either
aBerkeley DB or FSFS environment). Incremental backups are lesser things: backups of only the portion of the repository data that
has changed since the previous backup.

As far as full backups go, the naive approach might seem like a sane one, but unless you temporarily disable all other access to
your repository, simply doing a recursive directory copy runs the risk of generating a faulty backup. In the case of Berkeley DB,
the documentation describes a certain order in which database files can be copied that will guarantee a valid backup copy. A simil-
ar ordering exists for FSFS data. But you don't have to implement these algorithms yourself, because the Subversion development
team has already done so. The svnadmin hotcopy command takes care of the minutiainvolved in making a hot backup of your re-
pository. And itsinvocation is astrivial asthe Unix cp or Windows copy operations:

$ svnadm n hotcopy /var/svn/repos /var/svn/repos-backup

The resultant backup is a fully functional Subversion repository, able to be dropped in as a replacement for your live repository
should something go horribly wrong.

When making copies of a Berkeley DB repository, you can even instruct svnadmin hotcopy to purge any unused Berkeley DB
logfiles (see the section called “Purging unused Berkeley DB logfiles’) from the original repository upon completion of the copy.
Simply providethe - - cl ean- | ogs option on the command line.

$ svnadm n hotcopy --clean-1o0gs /var/svn/bdb-repos /var/svn/bdb-repos-backup

Additional tooling around this command is available, too. Thet ool s/ backup/ directory of the Subversion source distribution
holds the hot-backup.py script. This script adds a bit of backup management atop svnadmin hotcopy, allowing you to keep only
the most recent configured number of backups of each repository. It will automatically manage the names of the backed-up reposit-
ory directories to avoid collisions with previous backups and will “rotate off” older backups, deleting them so that only the most
recent ones remain. Even if you aso have an incremental backup, you might want to run this program on a regular basis. For ex-
ample, you might consider using hot-backup.py from a program scheduler (such as cron on Unix systems), which can cause it to
run nightly (or at whatever granularity of time you deem safe).

Some administrators use a different backup mechanism built around generating and storing repository dump data. We described in
the section called “Migrating Repository Data Elsewhere” how to use svnadmin dump with the- - i ncr enent al option to per-
form an incremental backup of a given revision or range of revisions. And of course, you can achieve afull backup variation of this
by omitting the - - i ncr enent al option to that command. There is some value in these methods, in that the format of your
backed-up information is flexible—it's not tied to a particular platform, versioned filesystem type, or release of Subversion or
Berkeley DB. But that flexibility comes at a cost, namely that restoring that data can take a long time—Ilonger with each new revi-
sion committed to your repository. Also, asis the case with so many of the various backup methods, revision property changes that
are made to already backed-up revisions won't get picked up by a nonoverlapping, incremental dump generation. For these reasons,
we recommend against relying solely on dump-based backup approaches.

As you can see, each of the various backup types and methods has its advantages and disadvantages. The easiest is by far the full
hot backup, which will always result in a perfect working replica of your repository. Should something bad happen to your live re-

175

Repository Administration

pository, you can restore from the backup with a simple recursive directory copy. Unfortunately, if you are maintaining multiple
backups of your repository, these full copies will each eat up just as much disk space as your live repository. Incremental backups,
by contrast, tend to be quicker to generate and smaller to store. But the restoration process can be a pain, often involving applying
multiple incremental backups. And other methods have their own peculiarities. Administrators need to find the balance between the
cost of making the backup and the cost of restoring it.

The svnsync program (see the section called “Repository Replication™) actually provides a rather handy middle-ground approach.
If you are regularly synchronizing a read-only mirror with your main repository, in a pinch your read-only mirror is probably a
good candidate for replacing that main repository if it falls over. The primary disadvantage of this method is that only the ver-
sioned repository data gets synchronized—repository configuration files, user-specified repository path locks, and other items that
might live in the physical repository directory but not inside the repository's virtual versioned filesystem are not handled by svn-

sync.

In any backup scenario, repository administrators need to be aware of how modifications to unversioned revision properties affect
their backups. Since these changes do not themselves generate new revisions, they will not trigger post-commit hooks, and may not
even trigger the pre-revprop-change and post-revprop-change hooks.®® And since you can change revision properties without re-
spect to chronological order—you can change any revision's properties at any time—an incremental backup of the latest few revi-
sions might not catch a property modification to a revision that was included as part of a previous backup.

Generally speaking, only the truly paranoid would need to back up their entire repository, say, every time a commit occurred.
However, assuming that a given repository has some other redundancy mechanism in place with relatively fine granularity (such as
per-commit emails or incremental dumps), a hot backup of the database might be something that a repository administrator would
want to include as part of a system-wide nightly backup. It's your data—protect it as much asyou'd like.

Often, the best approach to repository backupsis a diversified one that leverages combinations of the methods described here. The
Subversion developers, for example, back up the Subversion source code repository nightly using hot-backup.py and an off-site
rsync of those full backups; keep multiple archives of all the commit and property change notification emails; and have repository
mirrors maintained by various volunteers using svnsync. Y our solution might be similar, but should be catered to your needs and
that delicate balance of convenience with paranoia. And whatever you do, validate your backups from time to time—what good is
asparetire that has ahole in it? While al of this might not save your hardware from the iron fist of Fate,*# it should certai nly help
you recover from those trying times.

Managing Repository UUIDs

Subversion repositories have a universally unique identifier (UUID) associated with them. This is used by Subversion clients to
verify the identity of a repository when other forms of verification aren't good enough (such as checking the repository URL,
which can change over time). Most Subversion repository administrators rarely, if ever, need to think about repository UUIDs as
anything more than atrivial implementation detail of Subversion. Sometimes, however, there is cause for attention to this detail.

As a genera rule, you want the UUIDs of your live repositories to be unique. That is, after al, the point of having UUIDs. But
there are times when you want the repository UUIDs of two repositories to be exactly the same. For example, if you make a copy
of arepository for backup purposes, you want the backup to be a perfect replica of the original so that, in the event that you have to
restore that backup and replace the live repository, users don't suddenly see what looks like a different repository. When dumping
and loading repository history (as described earlier in the section called “Migrating Repository Data Elsewhere”), you get to decide
whether to apply the UUID encapsulated in the data dump stream to the repository in which you are loading the data. The particu-
lar circumstance will dictate the correct behavior.

There are a couple of ways to set (or reset) arepository's UUID, should you need to. As of Subversion 1.5, thisis as simple as us-
ing the svnadmin setuuid command. If you provide this subcommand with an explicit UUID, it will validate that the UUID is
well-formed and then set the repository UUID to that value. If you omit the UUID, a brand-new UUID will be generated for your
repository.

$ svnl ook uuid /var/svn/repos

Bsynadmin setlog can be called in away that bypasses the hook interface altogether.
4Y ou know—the collective term for all of her “fickle fingers.”

176

Repository Administration

cf 2b9d22- acb5- 11dc- bc8c- 05e83ce5dbec
$ svnadm n setuuid /var/svn/repos # generate a new UU D
$ svnl ook uuid /var/svn/repos
3c3c38f e-acc0-11dc- achc-1b37ff 1c8e7c
$ svnadm n setuuid /var/svn/repos \
cf 2b9d22- acb5- 11dc- bc8c- 05e83cebdbec # restore the old UUI D
$ svnl ook uuid /var/svn/repos
gf2b9d22—acb5-lldc—bc8c—05e83ce5dbec

For folks using versions of Subversion earlier than 1.5, these tasks are a little more complicated. Y ou can explicitly set a reposit-
ory's UUID by piping a repository dump file stub that carries the new UUID specification through svnadnmi n | oad -
-force-uui d REPCS- PATH,

$ svnadmn load --force-uuid /var/svn/repos <<EOF
SVN-f s- dunp- f or mat - versi on: 2

UU D cf 2b9d22- acb5-11dc- bc8c- 05e83ce5dbec
ECF

$ svnl ook uuid /var/svn/repos

cf 2b9d22- acb5-11dc- bc8c- 05e83ce5dbec

$

Having older versions of Subversion generate a brand-new UUID is not quite as simple to do, though. Y our best bet hereisto find
some other way to generate a UUID, and then explicitly set the repository's UUID to that value.

Moving and Removing Repositories

Subversion repository data is wholly contained within the repository directory. As such, you can move a Subversio